epi-1修饰的表柔比星和姜黄素包封脂质体靶向epcam对卵巢癌上皮细胞的抑制作用。

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Liposome Research Pub Date : 2023-06-01 DOI:10.1080/08982104.2022.2153138
Yu-Jia Wang, Ling Tang, Xu-Hong Lu, Ji-Tao Liu, Yuan-Yuan Wang, Hong-Xia Geng, Xue-Tao Li, Quan An
{"title":"epi-1修饰的表柔比星和姜黄素包封脂质体靶向epcam对卵巢癌上皮细胞的抑制作用。","authors":"Yu-Jia Wang,&nbsp;Ling Tang,&nbsp;Xu-Hong Lu,&nbsp;Ji-Tao Liu,&nbsp;Yuan-Yuan Wang,&nbsp;Hong-Xia Geng,&nbsp;Xue-Tao Li,&nbsp;Quan An","doi":"10.1080/08982104.2022.2153138","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficacy of epi-1 modified epirubicin and curcumin encapsulated liposomes targeting-EpCAM in the inhibition of epithelial ovarian cancer cells.\",\"authors\":\"Yu-Jia Wang,&nbsp;Ling Tang,&nbsp;Xu-Hong Lu,&nbsp;Ji-Tao Liu,&nbsp;Yuan-Yuan Wang,&nbsp;Hong-Xia Geng,&nbsp;Xue-Tao Li,&nbsp;Quan An\",\"doi\":\"10.1080/08982104.2022.2153138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2022.2153138\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2022.2153138","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

上皮性卵巢癌(EOC)的治疗是一个挑战,因为它仍然导致不满意的临床预后。这是由于化疗药物的毒性和靶向性差,以及肿瘤的转移。在这项研究中,我们设计了一种具有纳米结构的靶向脂质体来克服这些问题。在脂质体内包封表柔比星和姜黄素,发挥其协同抗肿瘤作用,同时在脂质体表面修饰Epi-1,靶向上皮细胞粘附分子(EpCAM)。Epi-1是一种大环肽,具有增强细胞摄取的活性靶向性和对肿瘤细胞的强细胞毒性。表柔比星和姜黄素包封可协同抑制新生血管和血管生成模拟(VM)通道的形成,从而抑制肿瘤在SKOV3细胞上的转移。双药负载的epi -1脂质体还能诱导细胞凋亡和下调转移相关蛋白,从而在体外有效地抗肿瘤。体内研究表明,双重药物负载的epi -1脂质体延长了血液循环时间,增加了药物在肿瘤部位的选择性积累。H&E染色和Ki-67免疫组化也显示靶向脂质体提高了抗肿瘤活性。此外,靶向脂质体下调血管生成相关蛋白以抑制血管生成,从而抑制肿瘤转移。综上所述,生产双药负载的epi -1脂质体是治疗EOC的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficacy of epi-1 modified epirubicin and curcumin encapsulated liposomes targeting-EpCAM in the inhibition of epithelial ovarian cancer cells.

Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
期刊最新文献
Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A2. Comparison of free vs. liposomal naringenin in white adipose tissue browning in C57BL/6j mice A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy. Design and preparation of pH-sensitive cytotoxic liposomal formulations containing antitumor colchicine analogues for target release. Impact of micelle characteristics on cholesterol absorption and ezetimibe inhibition: Insights from Niemann-Pick C1-like 1 binding and molecular structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1