因果推理中的数据集成。

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2023-01-01 Epub Date: 2022-04-08 DOI:10.1002/wics.1581
Xu Shi, Ziyang Pan, Wang Miao
{"title":"因果推理中的数据集成。","authors":"Xu Shi,&nbsp;Ziyang Pan,&nbsp;Wang Miao","doi":"10.1002/wics.1581","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating data from multiple heterogeneous sources has become increasingly popular to achieve a large sample size and diverse study population. This paper reviews development in causal inference methods that combines multiple datasets collected by potentially different designs from potentially heterogeneous populations. We summarize recent advances on combining randomized clinical trial with external information from observational studies or historical controls, combining samples when no single sample has all relevant variables with application to two-sample Mendelian randomization, distributed data setting under privacy concerns for comparative effectiveness and safety research using real-world data, Bayesian causal inference, and causal discovery methods.</p>","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880960/pdf/","citationCount":"9","resultStr":"{\"title\":\"Data Integration in Causal Inference.\",\"authors\":\"Xu Shi,&nbsp;Ziyang Pan,&nbsp;Wang Miao\",\"doi\":\"10.1002/wics.1581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating data from multiple heterogeneous sources has become increasingly popular to achieve a large sample size and diverse study population. This paper reviews development in causal inference methods that combines multiple datasets collected by potentially different designs from potentially heterogeneous populations. We summarize recent advances on combining randomized clinical trial with external information from observational studies or historical controls, combining samples when no single sample has all relevant variables with application to two-sample Mendelian randomization, distributed data setting under privacy concerns for comparative effectiveness and safety research using real-world data, Bayesian causal inference, and causal discovery methods.</p>\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880960/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1581\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1581","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

摘要

整合来自多个异构来源的数据越来越受欢迎,以实现大样本量和多样化的研究人群。本文综述了因果推理方法的发展,该方法结合了由潜在异质群体的潜在不同设计收集的多个数据集。我们总结了将随机临床试验与来自观察性研究或历史对照的外部信息相结合的最新进展,在没有单个样本具有所有相关变量的情况下将样本相结合,并应用于两个样本的孟德尔随机化,在隐私考虑下的分布式数据设置,以使用真实世界数据进行比较有效性和安全性研究,贝叶斯因果推断和因果发现方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Integration in Causal Inference.

Integrating data from multiple heterogeneous sources has become increasingly popular to achieve a large sample size and diverse study population. This paper reviews development in causal inference methods that combines multiple datasets collected by potentially different designs from potentially heterogeneous populations. We summarize recent advances on combining randomized clinical trial with external information from observational studies or historical controls, combining samples when no single sample has all relevant variables with application to two-sample Mendelian randomization, distributed data setting under privacy concerns for comparative effectiveness and safety research using real-world data, Bayesian causal inference, and causal discovery methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1