图深度学习在RNA中定位镁离子。

Q3 Biochemistry, Genetics and Molecular Biology QRB Discovery Pub Date : 2022-01-01 DOI:10.1017/qrd.2022.17
Yuanzhe Zhou, Shi-Jie Chen
{"title":"图深度学习在RNA中定位镁离子。","authors":"Yuanzhe Zhou,&nbsp;Shi-Jie Chen","doi":"10.1017/qrd.2022.17","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium ions (Mg<sup>2+</sup>) are vital for RNA structure and cellular functions. Present efforts in RNA structure determination and understanding of RNA functions are hampered by the inability to accurately locate Mg<sup>2+</sup> ions in an RNA. Here we present a machine-learning method, originally developed for computer visual recognition, to predict Mg<sup>2+</sup> binding sites in RNA molecules. By incorporating geometrical and electrostatic features of RNA, we capture the key ingredients of Mg<sup>2+</sup>-RNA interactions, and from deep learning, predict the Mg<sup>2+</sup> density distribution. Five-fold cross-validation on a dataset of 177 selected Mg<sup>2+</sup>-containing structures and comparisons with different methods validate the approach. This new approach predicts Mg<sup>2+</sup> binding sites with notably higher accuracy and efficiency. More importantly, saliency analysis for eight different Mg<sup>2+</sup> binding motifs indicates that the model can reveal critical coordinating atoms for Mg<sup>2+</sup> ions and ion-RNA inner/outer-sphere coordination. Furthermore, implementation of the model uncovers new Mg<sup>2+</sup> binding motifs. This new approach may be combined with X-ray crystallography structure determination to pinpoint the metal ion binding sites.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249658/pdf/","citationCount":"2","resultStr":"{\"title\":\"Graph deep learning locates magnesium ions in RNA.\",\"authors\":\"Yuanzhe Zhou,&nbsp;Shi-Jie Chen\",\"doi\":\"10.1017/qrd.2022.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnesium ions (Mg<sup>2+</sup>) are vital for RNA structure and cellular functions. Present efforts in RNA structure determination and understanding of RNA functions are hampered by the inability to accurately locate Mg<sup>2+</sup> ions in an RNA. Here we present a machine-learning method, originally developed for computer visual recognition, to predict Mg<sup>2+</sup> binding sites in RNA molecules. By incorporating geometrical and electrostatic features of RNA, we capture the key ingredients of Mg<sup>2+</sup>-RNA interactions, and from deep learning, predict the Mg<sup>2+</sup> density distribution. Five-fold cross-validation on a dataset of 177 selected Mg<sup>2+</sup>-containing structures and comparisons with different methods validate the approach. This new approach predicts Mg<sup>2+</sup> binding sites with notably higher accuracy and efficiency. More importantly, saliency analysis for eight different Mg<sup>2+</sup> binding motifs indicates that the model can reveal critical coordinating atoms for Mg<sup>2+</sup> ions and ion-RNA inner/outer-sphere coordination. Furthermore, implementation of the model uncovers new Mg<sup>2+</sup> binding motifs. This new approach may be combined with X-ray crystallography structure determination to pinpoint the metal ion binding sites.</p>\",\"PeriodicalId\":34636,\"journal\":{\"name\":\"QRB Discovery\",\"volume\":\"3 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249658/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"QRB Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qrd.2022.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2022.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

摘要

镁离子(Mg2+)对RNA结构和细胞功能至关重要。由于无法准确定位RNA中的Mg2+离子,目前在RNA结构测定和RNA功能理解方面的努力受到阻碍。在这里,我们提出了一种机器学习方法,最初是为计算机视觉识别而开发的,用于预测RNA分子中的Mg2+结合位点。通过结合RNA的几何和静电特征,我们捕获了Mg2+-RNA相互作用的关键成分,并从深度学习中预测了Mg2+的密度分布。在177个选定的含Mg2+结构的数据集上进行了五次交叉验证,并与不同方法进行了比较,验证了该方法的有效性。这种新方法预测Mg2+结合位点的准确性和效率显著提高。更重要的是,对8种不同Mg2+结合基序的显著性分析表明,该模型可以揭示Mg2+离子和离子- rna内外球配位的关键配位原子。此外,该模型的实现揭示了新的Mg2+结合基序。这种新方法可以与x射线晶体学结构测定相结合,以确定金属离子结合位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph deep learning locates magnesium ions in RNA.

Magnesium ions (Mg2+) are vital for RNA structure and cellular functions. Present efforts in RNA structure determination and understanding of RNA functions are hampered by the inability to accurately locate Mg2+ ions in an RNA. Here we present a machine-learning method, originally developed for computer visual recognition, to predict Mg2+ binding sites in RNA molecules. By incorporating geometrical and electrostatic features of RNA, we capture the key ingredients of Mg2+-RNA interactions, and from deep learning, predict the Mg2+ density distribution. Five-fold cross-validation on a dataset of 177 selected Mg2+-containing structures and comparisons with different methods validate the approach. This new approach predicts Mg2+ binding sites with notably higher accuracy and efficiency. More importantly, saliency analysis for eight different Mg2+ binding motifs indicates that the model can reveal critical coordinating atoms for Mg2+ ions and ion-RNA inner/outer-sphere coordination. Furthermore, implementation of the model uncovers new Mg2+ binding motifs. This new approach may be combined with X-ray crystallography structure determination to pinpoint the metal ion binding sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Calcium-binding site in AA10 LPMO from Vibrio cholerae suggests modulating effects during environmental survival and infection. An integrated approach using proximity labelling and chemical crosslinking to probe in situ host-virus protein-protein interactions. The big chill: Growth of in situ structural biology with cryo-electron tomography. Handheld portable device for delivering capped silver nanoparticles for antimicrobial applications. The potential of fluorogenicity for single molecule FRET and DyeCycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1