Eugenio Leyva-Figueroa, Magdiel Orozco-Valdivia, Jose Gonzalez-Fraga, Ulises Bardullas
{"title":"利用生理数据提高大学生科学处理技能的计算机探究。","authors":"Eugenio Leyva-Figueroa, Magdiel Orozco-Valdivia, Jose Gonzalez-Fraga, Ulises Bardullas","doi":"10.1152/advan.00211.2022","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of spontaneous tail coiling (STC) in zebrafish embryos is a functional parameter that allows the study of motor development. It has recently gained relevance as a biomarker to assess the neurotoxicity of environmental substances. Its practicability in the laboratory makes it an excellent pedagogical tool for promoting students' inquiry skills. However, the time and cost of materials and facilities limit their usage in undergraduate laboratories. This study presents the design of a computer-based educational module called ZebraSTMe, which is based on a tail coiling assay and aims to improve science process skills in undergraduate students by connecting them to relevant and novel content. We evaluate students' perception of learning, the quality of materials used, and the knowledge gained. Our results show that students perceived an improvement in their statistical analysis, representation, and discussion of experimental data. Additionally, the students evaluated the quality and ease of use of the materials and provided feedback for revision. A thematic analysis of the opinions revealed that the module activities promoted students' reflection on their professional strengths and weaknesses.<b>NEW & NOTEWORTHY</b> ZebraSTMe is a novel computer-based educational module that utilizes spontaneous tail coiling analysis in zebrafish embryos to enhance undergraduate students' scientific inquiry skills. By addressing the challenges of time, cost, and laboratory resources, the module improves students' science process skills and promotes reflection on their professional strengths and weaknesses. The innovative ZebraSTMe exemplifies the potential of integrating cutting-edge research topics into undergraduate education, leading to more engaging and effective learning experiences in physiology and other scientific disciplines.</p>","PeriodicalId":50852,"journal":{"name":"Advances in Physiology Education","volume":"47 3","pages":"393-398"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-based inquiry to enhance science process skills in undergraduate students using physiological data.\",\"authors\":\"Eugenio Leyva-Figueroa, Magdiel Orozco-Valdivia, Jose Gonzalez-Fraga, Ulises Bardullas\",\"doi\":\"10.1152/advan.00211.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The analysis of spontaneous tail coiling (STC) in zebrafish embryos is a functional parameter that allows the study of motor development. It has recently gained relevance as a biomarker to assess the neurotoxicity of environmental substances. Its practicability in the laboratory makes it an excellent pedagogical tool for promoting students' inquiry skills. However, the time and cost of materials and facilities limit their usage in undergraduate laboratories. This study presents the design of a computer-based educational module called ZebraSTMe, which is based on a tail coiling assay and aims to improve science process skills in undergraduate students by connecting them to relevant and novel content. We evaluate students' perception of learning, the quality of materials used, and the knowledge gained. Our results show that students perceived an improvement in their statistical analysis, representation, and discussion of experimental data. Additionally, the students evaluated the quality and ease of use of the materials and provided feedback for revision. A thematic analysis of the opinions revealed that the module activities promoted students' reflection on their professional strengths and weaknesses.<b>NEW & NOTEWORTHY</b> ZebraSTMe is a novel computer-based educational module that utilizes spontaneous tail coiling analysis in zebrafish embryos to enhance undergraduate students' scientific inquiry skills. By addressing the challenges of time, cost, and laboratory resources, the module improves students' science process skills and promotes reflection on their professional strengths and weaknesses. The innovative ZebraSTMe exemplifies the potential of integrating cutting-edge research topics into undergraduate education, leading to more engaging and effective learning experiences in physiology and other scientific disciplines.</p>\",\"PeriodicalId\":50852,\"journal\":{\"name\":\"Advances in Physiology Education\",\"volume\":\"47 3\",\"pages\":\"393-398\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physiology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1152/advan.00211.2022\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physiology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1152/advan.00211.2022","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Computer-based inquiry to enhance science process skills in undergraduate students using physiological data.
The analysis of spontaneous tail coiling (STC) in zebrafish embryos is a functional parameter that allows the study of motor development. It has recently gained relevance as a biomarker to assess the neurotoxicity of environmental substances. Its practicability in the laboratory makes it an excellent pedagogical tool for promoting students' inquiry skills. However, the time and cost of materials and facilities limit their usage in undergraduate laboratories. This study presents the design of a computer-based educational module called ZebraSTMe, which is based on a tail coiling assay and aims to improve science process skills in undergraduate students by connecting them to relevant and novel content. We evaluate students' perception of learning, the quality of materials used, and the knowledge gained. Our results show that students perceived an improvement in their statistical analysis, representation, and discussion of experimental data. Additionally, the students evaluated the quality and ease of use of the materials and provided feedback for revision. A thematic analysis of the opinions revealed that the module activities promoted students' reflection on their professional strengths and weaknesses.NEW & NOTEWORTHY ZebraSTMe is a novel computer-based educational module that utilizes spontaneous tail coiling analysis in zebrafish embryos to enhance undergraduate students' scientific inquiry skills. By addressing the challenges of time, cost, and laboratory resources, the module improves students' science process skills and promotes reflection on their professional strengths and weaknesses. The innovative ZebraSTMe exemplifies the potential of integrating cutting-edge research topics into undergraduate education, leading to more engaging and effective learning experiences in physiology and other scientific disciplines.
期刊介绍:
Advances in Physiology Education promotes and disseminates educational scholarship in order to enhance teaching and learning of physiology, neuroscience and pathophysiology. The journal publishes peer-reviewed descriptions of innovations that improve teaching in the classroom and laboratory, essays on education, and review articles based on our current understanding of physiological mechanisms. Submissions that evaluate new technologies for teaching and research, and educational pedagogy, are especially welcome. The audience for the journal includes educators at all levels: K–12, undergraduate, graduate, and professional programs.