扩散峰度成像作为乳腺癌的生物标志物。

BJR open Pub Date : 2023-01-01 DOI:10.1259/bjro.20220038
Maya Honda, Denis Le Bihan, Masako Kataoka, Mami Iima
{"title":"扩散峰度成像作为乳腺癌的生物标志物。","authors":"Maya Honda,&nbsp;Denis Le Bihan,&nbsp;Masako Kataoka,&nbsp;Mami Iima","doi":"10.1259/bjro.20220038","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion kurtosis imaging (DKI) is a diffusion-weighted imaging method that describes non-Gaussian signal behavior using a relatively simple mathematical model. A parameter, kurtosis K, describes the deviation of the diffusion signal decay from a Gaussian pattern. The deviation reflects the complexity of the tissue microstructure affecting water diffusion. Several studies have investigated the diagnostic performance of DKI in distinguishing malignant from benign breast lesions. DKI has been reported to correlate with subtypes and with several molecular and other factors related to the treatment and prognosis of breast cancer. Some technical considerations remain to be resolved for the clinical application of DKI in the breast.</p><p><strong>Advances in knowledge: </strong>DKI, which increases the sensitivity to complex tissue microstructure compared to standard DWI, has been applied in the breast, allowing to increase clinical performance in distinguishing malignant from benign lesions and in predicting prognosis or treatment response in breast cancer.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"5 1","pages":"20220038"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077411/pdf/","citationCount":"1","resultStr":"{\"title\":\"Diffusion kurtosis imaging as a biomarker of breast cancer.\",\"authors\":\"Maya Honda,&nbsp;Denis Le Bihan,&nbsp;Masako Kataoka,&nbsp;Mami Iima\",\"doi\":\"10.1259/bjro.20220038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion kurtosis imaging (DKI) is a diffusion-weighted imaging method that describes non-Gaussian signal behavior using a relatively simple mathematical model. A parameter, kurtosis K, describes the deviation of the diffusion signal decay from a Gaussian pattern. The deviation reflects the complexity of the tissue microstructure affecting water diffusion. Several studies have investigated the diagnostic performance of DKI in distinguishing malignant from benign breast lesions. DKI has been reported to correlate with subtypes and with several molecular and other factors related to the treatment and prognosis of breast cancer. Some technical considerations remain to be resolved for the clinical application of DKI in the breast.</p><p><strong>Advances in knowledge: </strong>DKI, which increases the sensitivity to complex tissue microstructure compared to standard DWI, has been applied in the breast, allowing to increase clinical performance in distinguishing malignant from benign lesions and in predicting prognosis or treatment response in breast cancer.</p>\",\"PeriodicalId\":72419,\"journal\":{\"name\":\"BJR open\",\"volume\":\"5 1\",\"pages\":\"20220038\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077411/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BJR open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1259/bjro.20220038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJR open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1259/bjro.20220038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

扩散峰度成像(DKI)是一种用相对简单的数学模型描述非高斯信号行为的扩散加权成像方法。峰度K是描述扩散信号衰减偏离高斯模式的参数。这种偏差反映了影响水扩散的组织微观结构的复杂性。一些研究已经调查了DKI在区分乳腺良恶性病变中的诊断性能。据报道,DKI与乳腺癌亚型以及与乳腺癌治疗和预后相关的几个分子和其他因素相关。DKI在乳腺的临床应用仍有一些技术问题有待解决。知识进展:与标准DWI相比,DKI提高了对复杂组织微观结构的敏感性,已应用于乳腺,提高了乳腺癌恶性病变与良性病变的区分以及预测预后或治疗反应的临床性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffusion kurtosis imaging as a biomarker of breast cancer.

Diffusion kurtosis imaging (DKI) is a diffusion-weighted imaging method that describes non-Gaussian signal behavior using a relatively simple mathematical model. A parameter, kurtosis K, describes the deviation of the diffusion signal decay from a Gaussian pattern. The deviation reflects the complexity of the tissue microstructure affecting water diffusion. Several studies have investigated the diagnostic performance of DKI in distinguishing malignant from benign breast lesions. DKI has been reported to correlate with subtypes and with several molecular and other factors related to the treatment and prognosis of breast cancer. Some technical considerations remain to be resolved for the clinical application of DKI in the breast.

Advances in knowledge: DKI, which increases the sensitivity to complex tissue microstructure compared to standard DWI, has been applied in the breast, allowing to increase clinical performance in distinguishing malignant from benign lesions and in predicting prognosis or treatment response in breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Artificial intelligence research in radiation oncology: a practical guide for the clinician on concepts and methods. Application of CT-based foundational artificial intelligence and radiomics models for prediction of survival for lung cancer patients treated on the NRG/RTOG 0617 clinical trial. Measuring brain perfusion by CT or MR as ancillary tests for diagnosis of brain death: a systematic review and meta-analysis. Post-mortem CT service structures in non-suspicious death investigations. Coronary stent imaging in photon counting computed tomography: improved imaging of in-stent stenoses in a phantom with optimized reconstruction kernels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1