{"title":"基于智能手机的人类传染性病原体生物传感诊断","authors":"Aditya Amrut Pawar , Sanchita Bipin Patwardhan , Sagar Barage , Rajesh Raut , Jaya Lakkakula , Arpita Roy , Rohit Sharma , Jigisha Anand","doi":"10.1016/j.pbiomolbio.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread usage of smartphones has made accessing vast troves of data easier for everyone. Smartphones are powerful, handy, and easy to operate, making them a valuable tool for improving public health through diagnostics. When combined with other devices and sensors, smartphones have shown potential for detecting, visualizing, collecting, and transferring data, enabling rapid disease diagnosis. In resource-limited settings, the user-friendly operating system of smartphones allows them to function as a point-of-care platform for healthcare and disease diagnosis. Herein, we critically reviewed the smartphone-based biosensors for the diagnosis and detection of diseases caused by infectious human pathogens, such as deadly viruses, bacteria, and fungi. These biosensors use several analytical sensing methods, including microscopic imaging, instrumental interface, colorimetric, fluorescence, and electrochemical biosensors. We have discussed the diverse diagnosis strategies and analytical performances of smartphone-based detection systems in identifying infectious human pathogens, along with future perspectives.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"180 ","pages":"Pages 120-130"},"PeriodicalIF":3.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smartphone-based diagnostics for biosensing infectious human pathogens\",\"authors\":\"Aditya Amrut Pawar , Sanchita Bipin Patwardhan , Sagar Barage , Rajesh Raut , Jaya Lakkakula , Arpita Roy , Rohit Sharma , Jigisha Anand\",\"doi\":\"10.1016/j.pbiomolbio.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The widespread usage of smartphones has made accessing vast troves of data easier for everyone. Smartphones are powerful, handy, and easy to operate, making them a valuable tool for improving public health through diagnostics. When combined with other devices and sensors, smartphones have shown potential for detecting, visualizing, collecting, and transferring data, enabling rapid disease diagnosis. In resource-limited settings, the user-friendly operating system of smartphones allows them to function as a point-of-care platform for healthcare and disease diagnosis. Herein, we critically reviewed the smartphone-based biosensors for the diagnosis and detection of diseases caused by infectious human pathogens, such as deadly viruses, bacteria, and fungi. These biosensors use several analytical sensing methods, including microscopic imaging, instrumental interface, colorimetric, fluorescence, and electrochemical biosensors. We have discussed the diverse diagnosis strategies and analytical performances of smartphone-based detection systems in identifying infectious human pathogens, along with future perspectives.</p></div>\",\"PeriodicalId\":54554,\"journal\":{\"name\":\"Progress in Biophysics & Molecular Biology\",\"volume\":\"180 \",\"pages\":\"Pages 120-130\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biophysics & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079610723000469\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723000469","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Smartphone-based diagnostics for biosensing infectious human pathogens
The widespread usage of smartphones has made accessing vast troves of data easier for everyone. Smartphones are powerful, handy, and easy to operate, making them a valuable tool for improving public health through diagnostics. When combined with other devices and sensors, smartphones have shown potential for detecting, visualizing, collecting, and transferring data, enabling rapid disease diagnosis. In resource-limited settings, the user-friendly operating system of smartphones allows them to function as a point-of-care platform for healthcare and disease diagnosis. Herein, we critically reviewed the smartphone-based biosensors for the diagnosis and detection of diseases caused by infectious human pathogens, such as deadly viruses, bacteria, and fungi. These biosensors use several analytical sensing methods, including microscopic imaging, instrumental interface, colorimetric, fluorescence, and electrochemical biosensors. We have discussed the diverse diagnosis strategies and analytical performances of smartphone-based detection systems in identifying infectious human pathogens, along with future perspectives.
期刊介绍:
Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.