{"title":"免疫功能健全的小鼠和大鼠模型的进展。","authors":"Wen Bu, Yi Li","doi":"10.1101/cshperspect.a041328","DOIUrl":null,"url":null,"abstract":"<p><p>Rodent models of breast cancer have played critical roles in our understanding of breast cancer development and progression as well as preclinical testing of cancer prevention and therapeutics. In this article, we first review the values and challenges of conventional genetically engineered mouse (GEM) models and newer iterations of these models, especially those with inducible or conditional regulation of oncogenes and tumor suppressors. Then, we discuss nongermline (somatic) GEM models of breast cancer with temporospatial control, made possible by intraductal injection of viral vectors to deliver oncogenes or to manipulate the genome of mammary epithelial cells. Next, we introduce the latest development in precision editing of endogenous genes using in vivo CRISPR-Cas9 technology. We conclude with the recent development in generating somatic rat models for modeling estrogen receptor-positive breast cancer, something that has been difficult to accomplish in mice.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810718/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in Immunocompetent Mouse and Rat Models.\",\"authors\":\"Wen Bu, Yi Li\",\"doi\":\"10.1101/cshperspect.a041328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rodent models of breast cancer have played critical roles in our understanding of breast cancer development and progression as well as preclinical testing of cancer prevention and therapeutics. In this article, we first review the values and challenges of conventional genetically engineered mouse (GEM) models and newer iterations of these models, especially those with inducible or conditional regulation of oncogenes and tumor suppressors. Then, we discuss nongermline (somatic) GEM models of breast cancer with temporospatial control, made possible by intraductal injection of viral vectors to deliver oncogenes or to manipulate the genome of mammary epithelial cells. Next, we introduce the latest development in precision editing of endogenous genes using in vivo CRISPR-Cas9 technology. We conclude with the recent development in generating somatic rat models for modeling estrogen receptor-positive breast cancer, something that has been difficult to accomplish in mice.</p>\",\"PeriodicalId\":10452,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810718/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041328\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041328","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Rodent models of breast cancer have played critical roles in our understanding of breast cancer development and progression as well as preclinical testing of cancer prevention and therapeutics. In this article, we first review the values and challenges of conventional genetically engineered mouse (GEM) models and newer iterations of these models, especially those with inducible or conditional regulation of oncogenes and tumor suppressors. Then, we discuss nongermline (somatic) GEM models of breast cancer with temporospatial control, made possible by intraductal injection of viral vectors to deliver oncogenes or to manipulate the genome of mammary epithelial cells. Next, we introduce the latest development in precision editing of endogenous genes using in vivo CRISPR-Cas9 technology. We conclude with the recent development in generating somatic rat models for modeling estrogen receptor-positive breast cancer, something that has been difficult to accomplish in mice.
期刊介绍:
Cold Spring Harbor Perspectives in Medicine is a monthly online publication comprising reviews on different aspects of a variety of diseases, covering everything from the molecular and cellular bases of disease to translational medicine and new therapeutic strategies.
Cold Spring Harbor Perspectives in Medicine is thus unmatched in its depth of coverage and represents an essential source where readers can find informed surveys and critical discussion of advances in molecular medicine.