共同暴露于超细炭黑和臭氧后肺-肠轴微生物组的改变。

IF 7.2 1区 医学 Q1 TOXICOLOGY Particle and Fibre Toxicology Pub Date : 2023-04-21 DOI:10.1186/s12989-023-00528-8
Md Habibul Hasan Mazumder, Jasleen Gandhi, Nairrita Majumder, Lei Wang, Robert Ian Cumming, Sydney Stradtman, Murugesan Velayutham, Quincy A Hathaway, Jonathan Shannahan, Gangqing Hu, Timothy R Nurkiewicz, Robert M Tighe, Eric E Kelley, Salik Hussain
{"title":"共同暴露于超细炭黑和臭氧后肺-肠轴微生物组的改变。","authors":"Md Habibul Hasan Mazumder, Jasleen Gandhi, Nairrita Majumder, Lei Wang, Robert Ian Cumming, Sydney Stradtman, Murugesan Velayutham, Quincy A Hathaway, Jonathan Shannahan, Gangqing Hu, Timothy R Nurkiewicz, Robert M Tighe, Eric E Kelley, Salik Hussain","doi":"10.1186/s12989-023-00528-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m<sup>3</sup>), O<sub>3</sub> (2 ppm) or CB + O<sub>3</sub> mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing.</p><p><strong>Results: </strong>Multiple CB + O<sub>3</sub> exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O<sub>3</sub> exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O<sub>3</sub> co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O<sub>3</sub> co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O<sub>3</sub> exposures.</p><p><strong>Conclusion: </strong>Our study confirms distinct gut and lung microbiome alterations after CB + O<sub>3</sub> inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122302/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone.\",\"authors\":\"Md Habibul Hasan Mazumder, Jasleen Gandhi, Nairrita Majumder, Lei Wang, Robert Ian Cumming, Sydney Stradtman, Murugesan Velayutham, Quincy A Hathaway, Jonathan Shannahan, Gangqing Hu, Timothy R Nurkiewicz, Robert M Tighe, Eric E Kelley, Salik Hussain\",\"doi\":\"10.1186/s12989-023-00528-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m<sup>3</sup>), O<sub>3</sub> (2 ppm) or CB + O<sub>3</sub> mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing.</p><p><strong>Results: </strong>Multiple CB + O<sub>3</sub> exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O<sub>3</sub> exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O<sub>3</sub> co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O<sub>3</sub> co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O<sub>3</sub> exposures.</p><p><strong>Conclusion: </strong>Our study confirms distinct gut and lung microbiome alterations after CB + O<sub>3</sub> inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122302/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-023-00528-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-023-00528-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:微生物生态失调是空气污染引起不良后果的潜在媒介。然而,对空气污染暴露后肺和肠道微生物组变化和肺-肠轴的系统比较缺乏。在本研究中,我们将雄性C57BL/6J小鼠暴露于吸入空气、CB (10 mg/m3)、O3 (2 ppm)或CB + O3混合物中,连续1天或4天,每天3小时,最后一次暴露24小时后安乐死。肺和肠道微生物组通过16s测序进行定量。结果:多次暴露于CB + O3诱导肺部炎症细胞(中性粒细胞、嗜酸性粒细胞和B淋巴细胞)增加,肺部绝对细菌负荷减少,肠道负荷增加。CB + O3暴露更有效,因为它在单次暴露后降低了肺部微生物组的α多样性。CB + O3共暴露惟一地增加了肺部的梭菌科和普氏菌科。血清短链脂肪酸(SCFA)(醋酸酯和丙酸酯)仅在CB + O3共暴露后显著升高。在多次暴露后,在肠道中也观察到产生SCFA的细菌家族(Ruminococcaceae, Lachnospiraceae和真细菌)的显著增加。共暴露诱导了肠道代谢物受体/介质(Gcg, Glp-1r, Cck) mRNA表达的显著改变。暴露于CB + O3后,肺中氧化应激相关mRNA表达、BALF、血清和肠道中氧化剂水平显著升高。结论:我们的研究证实了CB + O3吸入共同暴露后肠道和肺部微生物组的明显改变,并表明肠道微生物组可能发生稳态改变,以对抗环境暴露对代谢系统的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone.

Background: Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing.

Results: Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures.

Conclusion: Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.90
自引率
4.00%
发文量
69
审稿时长
6 months
期刊介绍: Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.
期刊最新文献
Microplastics caused embryonic growth retardation and placental dysfunction in pregnant mice by activating GRP78/IRE1α/JNK axis induced apoptosis and endoplasmic reticulum stress Spatial regulation of NMN supplementation on brain lipid metabolism upon subacute and sub-chronic PM exposure in C57BL/6 mice Microplastics are associated with elevated atherosclerotic risk and increased vascular complexity in acute coronary syndrome patients. Biodistribution of cerium dioxide and titanium dioxide nanomaterials in rats after single and repeated inhalation exposures. Multimodal pulmonary clearance kinetics of carbon black nanoparticles deposited in the lungs of rats: the role of alveolar macrophages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1