蛋白质结构预测问题的最终解决:关键创新和下一个前沿。

David A Agard, Gregory R Bowman, William DeGrado, Nikolay V Dokholyan, Huan-Xiang Zhou
{"title":"蛋白质结构预测问题的最终解决:关键创新和下一个前沿。","authors":"David A Agard,&nbsp;Gregory R Bowman,&nbsp;William DeGrado,&nbsp;Nikolay V Dokholyan,&nbsp;Huan-Xiang Zhou","doi":"10.12703/r-01-0000020","DOIUrl":null,"url":null,"abstract":"<p><p>The protein structure prediction problem is solved, at last, thanks in large part to the use of artificial intelligence. The structures predicted by AlphaFold and RoseTTAFold are becoming the requisite starting point for many protein scientists. New frontiers, such as the conformational sampling of intrinsically disordered proteins, are emerging.</p>","PeriodicalId":73016,"journal":{"name":"Faculty reviews","volume":"11 ","pages":"38"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815721/pdf/facrev-11-38.pdf","citationCount":"0","resultStr":"{\"title\":\"Solution of the protein structure prediction problem at last: crucial innovations and next frontiers.\",\"authors\":\"David A Agard,&nbsp;Gregory R Bowman,&nbsp;William DeGrado,&nbsp;Nikolay V Dokholyan,&nbsp;Huan-Xiang Zhou\",\"doi\":\"10.12703/r-01-0000020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The protein structure prediction problem is solved, at last, thanks in large part to the use of artificial intelligence. The structures predicted by AlphaFold and RoseTTAFold are becoming the requisite starting point for many protein scientists. New frontiers, such as the conformational sampling of intrinsically disordered proteins, are emerging.</p>\",\"PeriodicalId\":73016,\"journal\":{\"name\":\"Faculty reviews\",\"volume\":\"11 \",\"pages\":\"38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815721/pdf/facrev-11-38.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faculty reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12703/r-01-0000020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faculty reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12703/r-01-0000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质结构预测问题最终得到了解决,这在很大程度上要归功于人工智能的使用。AlphaFold和RoseTTAFold预测的结构正成为许多蛋白质科学家必不可少的起点。新的前沿领域,如内在无序蛋白质的构象采样,正在出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solution of the protein structure prediction problem at last: crucial innovations and next frontiers.

The protein structure prediction problem is solved, at last, thanks in large part to the use of artificial intelligence. The structures predicted by AlphaFold and RoseTTAFold are becoming the requisite starting point for many protein scientists. New frontiers, such as the conformational sampling of intrinsically disordered proteins, are emerging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
What’s New in The Diagnosis and Treatment of Premature Ovarian Insufficiency (POI)? ‘All About’ Extremophiles Recent advances in the understanding of tubal ectopic pregnancy. Recent advances in understanding TCR signaling: a synaptic perspective. Recent advances in understanding Alzheimer's Disease: diagnosis and management strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1