{"title":"嵌合抗原受体(CAR) T细胞及其疗效影响因素。","authors":"Victoria G Kravets, Yi Zhang, Hongxing Sun","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapeutic treatments for malignant cancers have revolutionized the medical and scientific fields. Lymphocytes engineered to display chimeric antigen receptor (CAR) molecules contribute to the exciting advancements that have stemmed from a greater understanding of cell structure and function, biological interactions, and the unique tumor microenvironment. CAR T cells circumvent the unique immune evasion capability of tumors by acting in a major histocompatibility complex (MHC) independent manner. Various factors contribute to the efficacy of CAR therapy, including CAR structure, gene transfer strategies, <i>in vitro</i> culture system, target selection, and preconditioning regimens. While recent clinical trials have shown promising success, cytotoxicity and other various challenges need to be addressed before CAR therapy can reach its full clinical potency. This review will discuss factors associated with CAR therapeutic success and the difficulties that continue to be a focus of research around the world.</p>","PeriodicalId":73788,"journal":{"name":"Journal of immunology research and therapy","volume":"2 1","pages":"100-113"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e2/17/nihms891695.PMC6233887.pdf","citationCount":"0","resultStr":"{\"title\":\"Chimeric-Antigen-Receptor (CAR) T Cells and the Factors Influencing their Therapeutic Efficacy.\",\"authors\":\"Victoria G Kravets, Yi Zhang, Hongxing Sun\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunotherapeutic treatments for malignant cancers have revolutionized the medical and scientific fields. Lymphocytes engineered to display chimeric antigen receptor (CAR) molecules contribute to the exciting advancements that have stemmed from a greater understanding of cell structure and function, biological interactions, and the unique tumor microenvironment. CAR T cells circumvent the unique immune evasion capability of tumors by acting in a major histocompatibility complex (MHC) independent manner. Various factors contribute to the efficacy of CAR therapy, including CAR structure, gene transfer strategies, <i>in vitro</i> culture system, target selection, and preconditioning regimens. While recent clinical trials have shown promising success, cytotoxicity and other various challenges need to be addressed before CAR therapy can reach its full clinical potency. This review will discuss factors associated with CAR therapeutic success and the difficulties that continue to be a focus of research around the world.</p>\",\"PeriodicalId\":73788,\"journal\":{\"name\":\"Journal of immunology research and therapy\",\"volume\":\"2 1\",\"pages\":\"100-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e2/17/nihms891695.PMC6233887.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunology research and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology research and therapy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chimeric-Antigen-Receptor (CAR) T Cells and the Factors Influencing their Therapeutic Efficacy.
Immunotherapeutic treatments for malignant cancers have revolutionized the medical and scientific fields. Lymphocytes engineered to display chimeric antigen receptor (CAR) molecules contribute to the exciting advancements that have stemmed from a greater understanding of cell structure and function, biological interactions, and the unique tumor microenvironment. CAR T cells circumvent the unique immune evasion capability of tumors by acting in a major histocompatibility complex (MHC) independent manner. Various factors contribute to the efficacy of CAR therapy, including CAR structure, gene transfer strategies, in vitro culture system, target selection, and preconditioning regimens. While recent clinical trials have shown promising success, cytotoxicity and other various challenges need to be addressed before CAR therapy can reach its full clinical potency. This review will discuss factors associated with CAR therapeutic success and the difficulties that continue to be a focus of research around the world.