{"title":"基于磁强计数据的可穿戴惯性测量装置同步。","authors":"Andreas Spilz, Michael Munz","doi":"10.1515/bmt-2021-0329","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Synchronisation of wireless inertial measurement units in human movement analysis is often achieved using event-based synchronisation techniques. However, these techniques lack precise event generation and accuracy. An inaccurate synchronisation could lead to large errors in motion estimation and reconstruction and therefore wrong analysis outputs.</p><p><strong>Methods: </strong>We propose a novel event-based synchronisation technique based on a magnetic field, which allows sub-sample accuracy. A setup featuring Shimmer3 inertial measurement units is designed to test the approach.</p><p><strong>Results: </strong>The proposed technique shows to be able to synchronise with a maximum offset of below 2.6 ms with sensors measuring at 100 Hz. The investigated parameters suggest a required synchronisation time of 8 s.</p><p><strong>Conclusions: </strong>The results indicate a reliable event generation and detection for synchronisation of wireless inertial measurement units. Further research should investigate the temperature changes that the sensors are exposed to during human motion analysis and their influence on the internal time measurement of the sensors. In addition, the approach should be tested using inertial measurement units from different manufacturers to investigate an identified constant offset in the accuracy measurements.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronisation of wearable inertial measurement units based on magnetometer data.\",\"authors\":\"Andreas Spilz, Michael Munz\",\"doi\":\"10.1515/bmt-2021-0329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Synchronisation of wireless inertial measurement units in human movement analysis is often achieved using event-based synchronisation techniques. However, these techniques lack precise event generation and accuracy. An inaccurate synchronisation could lead to large errors in motion estimation and reconstruction and therefore wrong analysis outputs.</p><p><strong>Methods: </strong>We propose a novel event-based synchronisation technique based on a magnetic field, which allows sub-sample accuracy. A setup featuring Shimmer3 inertial measurement units is designed to test the approach.</p><p><strong>Results: </strong>The proposed technique shows to be able to synchronise with a maximum offset of below 2.6 ms with sensors measuring at 100 Hz. The investigated parameters suggest a required synchronisation time of 8 s.</p><p><strong>Conclusions: </strong>The results indicate a reliable event generation and detection for synchronisation of wireless inertial measurement units. Further research should investigate the temperature changes that the sensors are exposed to during human motion analysis and their influence on the internal time measurement of the sensors. In addition, the approach should be tested using inertial measurement units from different manufacturers to investigate an identified constant offset in the accuracy measurements.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2021-0329\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2021-0329","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synchronisation of wearable inertial measurement units based on magnetometer data.
Objectives: Synchronisation of wireless inertial measurement units in human movement analysis is often achieved using event-based synchronisation techniques. However, these techniques lack precise event generation and accuracy. An inaccurate synchronisation could lead to large errors in motion estimation and reconstruction and therefore wrong analysis outputs.
Methods: We propose a novel event-based synchronisation technique based on a magnetic field, which allows sub-sample accuracy. A setup featuring Shimmer3 inertial measurement units is designed to test the approach.
Results: The proposed technique shows to be able to synchronise with a maximum offset of below 2.6 ms with sensors measuring at 100 Hz. The investigated parameters suggest a required synchronisation time of 8 s.
Conclusions: The results indicate a reliable event generation and detection for synchronisation of wireless inertial measurement units. Further research should investigate the temperature changes that the sensors are exposed to during human motion analysis and their influence on the internal time measurement of the sensors. In addition, the approach should be tested using inertial measurement units from different manufacturers to investigate an identified constant offset in the accuracy measurements.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.