在正常灌溉和减少灌溉条件下,超疏水沙覆盖对番茄(Solanum lycopersicum)植株蒸散作用和表型反应的影响。

Q3 Agricultural and Biological Sciences Plant-environment interactions (Hoboken, N.J.) Pub Date : 2022-04-07 eCollection Date: 2022-04-01 DOI:10.1002/pei3.10074
Kennedy Odokonyero, Adair Gallo, Vinicius Dos Santos, Himanshu Mishra
{"title":"在正常灌溉和减少灌溉条件下,超疏水沙覆盖对番茄(Solanum lycopersicum)植株蒸散作用和表型反应的影响。","authors":"Kennedy Odokonyero, Adair Gallo, Vinicius Dos Santos, Himanshu Mishra","doi":"10.1002/pei3.10074","DOIUrl":null,"url":null,"abstract":"<p><p>Irrigated agriculture in arid and semi-arid regions is a vital contributor to the global food supply. However, these regions endure massive evaporative losses that are compensated by exploiting limited freshwater resources. To increase water-use efficiency in these giga-scale operations, plastic mulches are utilized; however, their non-biodegradability and eventual land-filling renders them unsustainable. In response, we have developed superhydrophobic sand (SHS) mulching technology that is comprised of sand grains or sandy soils with a nanoscale coating of paraffin wax. Here, we investigate the effects of 1 cm-thick SHS mulching on the evapotranspiration and phenotypic responses of tomato (<i>Solanum lycopersicum</i>) plants as a model system under normal and reduced irrigation inside controlled growth chambers. Experimental results reveal that under either irrigation scenario, SHS mulching suppresses evaporation and enhances transpiration by 78% and 17%, respectively relative to the unmulched soil. Comprehensive phenotyping revealed that SHS mulching enhanced root xylem vessel diameter, stomatal aperture, stomatal conductance, and chlorophyll content index by 21%, 25%, 28%, and 23%, respectively, in comparison with the unmulched soil. Consequently, total fruit yields, total dry mass, and harvest index increased in SHS-mulched plants by 33%, 20%, and 16%, respectively compared with the unmulched soil. We also provide mechanistic insights into the effects of SHS mulching on plant physiological processes. These results underscore the potential of SHS for realizing food-water security and greening initiatives in arid regions.</p>","PeriodicalId":74457,"journal":{"name":"Plant-environment interactions (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of superhydrophobic sand mulching on evapotranspiration and phenotypic responses in tomato (<i>Solanum lycopersicum</i>) plants under normal and reduced irrigation.\",\"authors\":\"Kennedy Odokonyero, Adair Gallo, Vinicius Dos Santos, Himanshu Mishra\",\"doi\":\"10.1002/pei3.10074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Irrigated agriculture in arid and semi-arid regions is a vital contributor to the global food supply. However, these regions endure massive evaporative losses that are compensated by exploiting limited freshwater resources. To increase water-use efficiency in these giga-scale operations, plastic mulches are utilized; however, their non-biodegradability and eventual land-filling renders them unsustainable. In response, we have developed superhydrophobic sand (SHS) mulching technology that is comprised of sand grains or sandy soils with a nanoscale coating of paraffin wax. Here, we investigate the effects of 1 cm-thick SHS mulching on the evapotranspiration and phenotypic responses of tomato (<i>Solanum lycopersicum</i>) plants as a model system under normal and reduced irrigation inside controlled growth chambers. Experimental results reveal that under either irrigation scenario, SHS mulching suppresses evaporation and enhances transpiration by 78% and 17%, respectively relative to the unmulched soil. Comprehensive phenotyping revealed that SHS mulching enhanced root xylem vessel diameter, stomatal aperture, stomatal conductance, and chlorophyll content index by 21%, 25%, 28%, and 23%, respectively, in comparison with the unmulched soil. Consequently, total fruit yields, total dry mass, and harvest index increased in SHS-mulched plants by 33%, 20%, and 16%, respectively compared with the unmulched soil. We also provide mechanistic insights into the effects of SHS mulching on plant physiological processes. These results underscore the potential of SHS for realizing food-water security and greening initiatives in arid regions.</p>\",\"PeriodicalId\":74457,\"journal\":{\"name\":\"Plant-environment interactions (Hoboken, N.J.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant-environment interactions (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pei3.10074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant-environment interactions (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pei3.10074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

干旱和半干旱地区的灌溉农业是全球粮食供应的重要组成部分。然而,这些地区承受着大量的蒸发损失,而这些损失需要通过利用有限的淡水资源来补偿。为了提高这些大规模作业的用水效率,人们使用了塑料地膜;然而,塑料地膜的不可生物降解性和最终的土地填埋使其难以为继。为此,我们开发了超疏水沙(SHS)覆盖技术,该技术由带有纳米级石蜡涂层的沙粒或沙土组成。在此,我们以番茄(Solanum lycopersicum)植物为模型系统,研究了 1 厘米厚的 SHS 覆膜在可控生长室正常灌溉和减少灌溉条件下对其蒸散作用和表型反应的影响。实验结果表明,无论在哪种灌溉条件下,SHS地膜覆盖都能抑制蒸发,与未覆膜土壤相比,蒸腾量分别提高了78%和17%。综合表型分析表明,与未覆膜土壤相比,SHS 覆膜可使根木质部血管直径、气孔孔径、气孔导度和叶绿素含量指数分别提高 21%、25%、28% 和 23%。因此,与未覆土的土壤相比,SHS 覆土植株的果实总产量、总干重和收获指数分别提高了 33%、20% 和 16%。我们还从机理上揭示了 SHS 覆膜对植物生理过程的影响。这些结果凸显了 SHS 在实现干旱地区粮食-水安全和绿化计划方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of superhydrophobic sand mulching on evapotranspiration and phenotypic responses in tomato (Solanum lycopersicum) plants under normal and reduced irrigation.

Irrigated agriculture in arid and semi-arid regions is a vital contributor to the global food supply. However, these regions endure massive evaporative losses that are compensated by exploiting limited freshwater resources. To increase water-use efficiency in these giga-scale operations, plastic mulches are utilized; however, their non-biodegradability and eventual land-filling renders them unsustainable. In response, we have developed superhydrophobic sand (SHS) mulching technology that is comprised of sand grains or sandy soils with a nanoscale coating of paraffin wax. Here, we investigate the effects of 1 cm-thick SHS mulching on the evapotranspiration and phenotypic responses of tomato (Solanum lycopersicum) plants as a model system under normal and reduced irrigation inside controlled growth chambers. Experimental results reveal that under either irrigation scenario, SHS mulching suppresses evaporation and enhances transpiration by 78% and 17%, respectively relative to the unmulched soil. Comprehensive phenotyping revealed that SHS mulching enhanced root xylem vessel diameter, stomatal aperture, stomatal conductance, and chlorophyll content index by 21%, 25%, 28%, and 23%, respectively, in comparison with the unmulched soil. Consequently, total fruit yields, total dry mass, and harvest index increased in SHS-mulched plants by 33%, 20%, and 16%, respectively compared with the unmulched soil. We also provide mechanistic insights into the effects of SHS mulching on plant physiological processes. These results underscore the potential of SHS for realizing food-water security and greening initiatives in arid regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Untying the knot: Unraveling genetic mechanisms behind black knot disease resistance in Prunus salicina (Japanese plum). Inhibitory effects of N-trans-cinnamoyltyramine on growth of invasive weeds and weedy rice. An intelligent system for determining the degree of tree bark beetle damage based on the use of generative-adversarial neural networks. Picophytoplankton prevail year-round in the Elbe estuary. How dry is dead? Evaluating the impact of desiccation on the viability of the invasive species Cissus quadrangularis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1