TGF-β信号通过调节血管系统的形成和可塑性在肿瘤微环境中的作用

IF 12.1 1区 医学 Q1 ONCOLOGY Seminars in cancer biology Pub Date : 2023-07-01 DOI:10.1016/j.semcancer.2023.04.007
Tetsuro Watabe , Kazuki Takahashi , Kristian Pietras , Yasuhiro Yoshimatsu
{"title":"TGF-β信号通过调节血管系统的形成和可塑性在肿瘤微环境中的作用","authors":"Tetsuro Watabe ,&nbsp;Kazuki Takahashi ,&nbsp;Kristian Pietras ,&nbsp;Yasuhiro Yoshimatsu","doi":"10.1016/j.semcancer.2023.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>Tumor cells evolve in tumor microenvironment composed of multiple cell types. Among these, endothelial cells (ECs) are the major players in tumor angiogenesis, which is a driver of tumor progression and metastasis. Increasing evidence suggests that ECs also contribute to tumor progression and metastasis as they modify their phenotypes to differentiate into mesenchymal cells through a process known as endothelial-mesenchymal transition (EndoMT). This plasticity of ECs is mediated by various cytokines, including transforming growth factor-β (TGF-β), and modulated by other stimuli depending on the cellular contexts. Recent lines of evidence have shown that EndoMT is involved in various steps of tumor progression, including tumor angiogenesis, intravasation and extravasation of cancer cells, formation of cancer-associated fibroblasts, and cancer therapy resistance. In this review, we summarize current updates on EndoMT, highlight the roles of EndoMT in tumor progression and metastasis, and underline targeting EndoMT as a potential therapeutic strategy.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Roles of TGF-β signals in tumor microenvironment via regulation of the formation and plasticity of vascular system\",\"authors\":\"Tetsuro Watabe ,&nbsp;Kazuki Takahashi ,&nbsp;Kristian Pietras ,&nbsp;Yasuhiro Yoshimatsu\",\"doi\":\"10.1016/j.semcancer.2023.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tumor cells evolve in tumor microenvironment composed of multiple cell types. Among these, endothelial cells (ECs) are the major players in tumor angiogenesis, which is a driver of tumor progression and metastasis. Increasing evidence suggests that ECs also contribute to tumor progression and metastasis as they modify their phenotypes to differentiate into mesenchymal cells through a process known as endothelial-mesenchymal transition (EndoMT). This plasticity of ECs is mediated by various cytokines, including transforming growth factor-β (TGF-β), and modulated by other stimuli depending on the cellular contexts. Recent lines of evidence have shown that EndoMT is involved in various steps of tumor progression, including tumor angiogenesis, intravasation and extravasation of cancer cells, formation of cancer-associated fibroblasts, and cancer therapy resistance. In this review, we summarize current updates on EndoMT, highlight the roles of EndoMT in tumor progression and metastasis, and underline targeting EndoMT as a potential therapeutic strategy.</p></div>\",\"PeriodicalId\":21594,\"journal\":{\"name\":\"Seminars in cancer biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cancer biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044579X23000652\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X23000652","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

肿瘤细胞在由多种细胞类型组成的肿瘤微环境中进化。其中,内皮细胞是肿瘤血管生成的主要参与者,而血管生成是肿瘤进展和转移的驱动因素。越来越多的证据表明,内皮细胞也有助于肿瘤的进展和转移,因为它们通过内皮-间充质转化(EndoMT)过程改变表型分化为间充质细胞。内皮细胞的这种可塑性是由各种细胞因子介导的,包括转化生长因子-β(TGF-β),并根据细胞环境受到其他刺激的调节。最近的证据表明EndoMT参与肿瘤进展的各个步骤,包括肿瘤血管生成、癌症细胞的浸润和外渗、癌症相关成纤维细胞的形成和癌症治疗耐药性。在这篇综述中,我们总结了EndoMT的最新进展,强调EndoMT在肿瘤进展和转移中的作用,并强调靶向EndoMT是一种潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Roles of TGF-β signals in tumor microenvironment via regulation of the formation and plasticity of vascular system

Tumor cells evolve in tumor microenvironment composed of multiple cell types. Among these, endothelial cells (ECs) are the major players in tumor angiogenesis, which is a driver of tumor progression and metastasis. Increasing evidence suggests that ECs also contribute to tumor progression and metastasis as they modify their phenotypes to differentiate into mesenchymal cells through a process known as endothelial-mesenchymal transition (EndoMT). This plasticity of ECs is mediated by various cytokines, including transforming growth factor-β (TGF-β), and modulated by other stimuli depending on the cellular contexts. Recent lines of evidence have shown that EndoMT is involved in various steps of tumor progression, including tumor angiogenesis, intravasation and extravasation of cancer cells, formation of cancer-associated fibroblasts, and cancer therapy resistance. In this review, we summarize current updates on EndoMT, highlight the roles of EndoMT in tumor progression and metastasis, and underline targeting EndoMT as a potential therapeutic strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seminars in cancer biology
Seminars in cancer biology 医学-肿瘤学
CiteScore
26.80
自引率
4.10%
发文量
347
审稿时长
15.1 weeks
期刊介绍: Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field. The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies. To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area. The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.
期刊最新文献
Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems Convergent evolution of senescent fibroblasts in fibrosis and cancer with aging A systematic review of cardiovascular toxicities induced by cancer immune therapies: Underlying mechanisms, clinical manifestations and therapeutic approaches BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer Origins and molecular effects of hypoxia in cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1