{"title":"单胺氧化酶Papez Circuit 与广泛性焦虑症的潜在联系。","authors":"Ravikant Sharma, Murali Kumarasamy, Vipan Kumar Parihar, V Ravichandiran, Nitesh Kumar","doi":"10.2174/1871527322666230412105711","DOIUrl":null,"url":null,"abstract":"<p><p>Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"638-655"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders.\",\"authors\":\"Ravikant Sharma, Murali Kumarasamy, Vipan Kumar Parihar, V Ravichandiran, Nitesh Kumar\",\"doi\":\"10.2174/1871527322666230412105711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.</p>\",\"PeriodicalId\":10456,\"journal\":{\"name\":\"CNS & neurological disorders drug targets\",\"volume\":\" \",\"pages\":\"638-655\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS & neurological disorders drug targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1871527322666230412105711\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871527322666230412105711","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
焦虑症是一种常见的精神疾病,影响着世界各地的许多人,其治疗通常以使用苯二氮卓类药物、5-羟色胺和 5-羟基酪氨酸(MAO)神经递质等药理物质为基础。MAO 神经递质水平是生物效应的决定性因素。本综述总结了目前对 MAO 系统及其在调节焦虑相关脑回路和行为中作用的认识。多项研究表明,MAO-A 多态性与广泛性焦虑症(GAD)的易感性有关。5-HT 系统参与了广泛的生理和行为过程,涉及焦虑、攻击性、应激反应和其他情绪强度因素。其中,5-HT、NA 和 DA 是传统的 5-HT 神经元,它们支配着一系列生物活动,包括睡眠、警觉性、进食、体温调节、疼痛、情绪和记忆。DNMTs (DNA 甲基转移酶)蛋白家族在表观遗传学中发挥着越来越重要的作用,它与较低的转录活性有关,并能激活 DNA 甲基化。在本文中,我们概述了目前阐明大脑在调节焦虑方面复杂功能的最新进展。
Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders.
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
期刊介绍:
Aims & Scope
CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes.
CNS & Neurological Disorders - Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies.
As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.