长期暴露于氨苄西林改变实验室大鼠肺微生物组成。

IF 1.5 4区 医学 Q3 RESPIRATORY SYSTEM Experimental Lung Research Pub Date : 2023-01-01 DOI:10.1080/01902148.2023.2219790
Ping Chen, Tingting Hu, Haonan Jiang, Bing Li, Guiying Li, Pixin Ran, Yumin Zhou
{"title":"长期暴露于氨苄西林改变实验室大鼠肺微生物组成。","authors":"Ping Chen,&nbsp;Tingting Hu,&nbsp;Haonan Jiang,&nbsp;Bing Li,&nbsp;Guiying Li,&nbsp;Pixin Ran,&nbsp;Yumin Zhou","doi":"10.1080/01902148.2023.2219790","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>High-throughput sequencing technologies have revealed that the lungs contain a variety of low biomass microbiota associated with various lung diseases. Rat model is an important tool to understand the possible causal relationship between pulmonary microbiota and diseases. Antibiotic exposure can alter the microbiota, however, a direct influence of long-term ampicillin exposure on commensal bacteria of healthy lungs has not been investigated, which could be useful in the study of the relation between microbiome and long-term lung diseases, especially in animal model-making of lung diseases.</p><p><strong>Methods: </strong>The rats were aerosolized ampicillin of different concentrations for five months, and then the effect on the lung microbiota was investigated using 16S rRNA gene sequencing.</p><p><strong>Results: </strong>The ampicillin treatment by a certain concentration (LA5, 0.2 ml of 5 mg/ml ampicillin) administration leads to profound changes in the rat lung microbiota but not in the low critical ampicillin concentration (LA01 and LA1, 0.1 and 1 mg/ml ampicillin), when compared to the untreated group (LC). The genus <i>Acidobacteria_Gp16</i> dominated the ampicillin treated lung microbiota while the genera <i>Brucella</i>, <i>Acinetobacter</i>, <i>Acidobacteria_Gp14</i>, <i>Sphingomonas</i>, and <i>Tumebacillus</i> dominated the untreated lung microbiota. The predicted KEGG pathway analysis profile revealed some difference in the ampicillin treated group.</p><p><strong>Conclusions: </strong>The study demonstrated the effects of different concentrations of ampicillin treatment on lung microbiota of rats in a relatively long term. It could serve as a basis for the clinical use of antibiotic and the use of ampicillin to control certain bacteria in the animal model-making of respiratory diseases such as chronic obstructive pulmonary disease.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"49 1","pages":"116-130"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic exposure to ampicillin alters lung microbial composition in laboratory rat.\",\"authors\":\"Ping Chen,&nbsp;Tingting Hu,&nbsp;Haonan Jiang,&nbsp;Bing Li,&nbsp;Guiying Li,&nbsp;Pixin Ran,&nbsp;Yumin Zhou\",\"doi\":\"10.1080/01902148.2023.2219790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>High-throughput sequencing technologies have revealed that the lungs contain a variety of low biomass microbiota associated with various lung diseases. Rat model is an important tool to understand the possible causal relationship between pulmonary microbiota and diseases. Antibiotic exposure can alter the microbiota, however, a direct influence of long-term ampicillin exposure on commensal bacteria of healthy lungs has not been investigated, which could be useful in the study of the relation between microbiome and long-term lung diseases, especially in animal model-making of lung diseases.</p><p><strong>Methods: </strong>The rats were aerosolized ampicillin of different concentrations for five months, and then the effect on the lung microbiota was investigated using 16S rRNA gene sequencing.</p><p><strong>Results: </strong>The ampicillin treatment by a certain concentration (LA5, 0.2 ml of 5 mg/ml ampicillin) administration leads to profound changes in the rat lung microbiota but not in the low critical ampicillin concentration (LA01 and LA1, 0.1 and 1 mg/ml ampicillin), when compared to the untreated group (LC). The genus <i>Acidobacteria_Gp16</i> dominated the ampicillin treated lung microbiota while the genera <i>Brucella</i>, <i>Acinetobacter</i>, <i>Acidobacteria_Gp14</i>, <i>Sphingomonas</i>, and <i>Tumebacillus</i> dominated the untreated lung microbiota. The predicted KEGG pathway analysis profile revealed some difference in the ampicillin treated group.</p><p><strong>Conclusions: </strong>The study demonstrated the effects of different concentrations of ampicillin treatment on lung microbiota of rats in a relatively long term. It could serve as a basis for the clinical use of antibiotic and the use of ampicillin to control certain bacteria in the animal model-making of respiratory diseases such as chronic obstructive pulmonary disease.</p>\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\"49 1\",\"pages\":\"116-130\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2023.2219790\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2023.2219790","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

目的:高通量测序技术揭示了肺部含有多种与各种肺部疾病相关的低生物量微生物群。大鼠模型是了解肺部微生物群与疾病之间可能的因果关系的重要工具。抗生素暴露可以改变微生物群,但长期暴露氨苄西林对健康肺部共生菌的直接影响尚未研究,这可能有助于研究微生物群与长期肺部疾病之间的关系,特别是在肺部疾病的动物模型制作中。方法:给大鼠雾化不同浓度氨苄西林5个月,采用16S rRNA基因测序法观察其对肺微生物群的影响。结果:与未处理组(LC)相比,一定浓度的氨苄西林(LA01、LA1、0.1、1mg /ml氨苄西林)给药后大鼠肺微生物群发生了明显变化,但低临界氨苄西林浓度(LA01、LA1、0.1、1mg /ml氨苄西林)无明显变化。氨苄西林处理组肺菌群以酸菌属gp16为主,未处理组肺菌群以布鲁氏菌属、不动杆菌属、酸菌属gp14、鞘氨单胞菌属和烟杆菌属为主。预测的KEGG通路分析显示氨苄西林治疗组存在一些差异。结论:本研究证实了不同浓度氨苄西林对大鼠肺部微生物群的长期影响。可为慢性阻塞性肺疾病等呼吸系统疾病动物模型制作中抗生素的临床应用和氨苄西林控制某些细菌的应用提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chronic exposure to ampicillin alters lung microbial composition in laboratory rat.

Purpose: High-throughput sequencing technologies have revealed that the lungs contain a variety of low biomass microbiota associated with various lung diseases. Rat model is an important tool to understand the possible causal relationship between pulmonary microbiota and diseases. Antibiotic exposure can alter the microbiota, however, a direct influence of long-term ampicillin exposure on commensal bacteria of healthy lungs has not been investigated, which could be useful in the study of the relation between microbiome and long-term lung diseases, especially in animal model-making of lung diseases.

Methods: The rats were aerosolized ampicillin of different concentrations for five months, and then the effect on the lung microbiota was investigated using 16S rRNA gene sequencing.

Results: The ampicillin treatment by a certain concentration (LA5, 0.2 ml of 5 mg/ml ampicillin) administration leads to profound changes in the rat lung microbiota but not in the low critical ampicillin concentration (LA01 and LA1, 0.1 and 1 mg/ml ampicillin), when compared to the untreated group (LC). The genus Acidobacteria_Gp16 dominated the ampicillin treated lung microbiota while the genera Brucella, Acinetobacter, Acidobacteria_Gp14, Sphingomonas, and Tumebacillus dominated the untreated lung microbiota. The predicted KEGG pathway analysis profile revealed some difference in the ampicillin treated group.

Conclusions: The study demonstrated the effects of different concentrations of ampicillin treatment on lung microbiota of rats in a relatively long term. It could serve as a basis for the clinical use of antibiotic and the use of ampicillin to control certain bacteria in the animal model-making of respiratory diseases such as chronic obstructive pulmonary disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Lung Research
Experimental Lung Research 医学-呼吸系统
CiteScore
3.80
自引率
0.00%
发文量
23
审稿时长
2 months
期刊介绍: Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia. Authors can choose to publish gold open access in this journal.
期刊最新文献
Exosomes derived from hypoxic alveolar epithelial cells promote the phenotypic transformation of pulmonary artery smooth muscle cells via the Rap1 pathway Treatment with inhaled aerosolised ethanol reduces viral load and potentiates macrophage responses in an established influenza mouse model Inhibition of GBP5 activates autophagy to alleviate inflammatory response in LPS-induced lung injury in mice Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury CLCA1 exacerbates lung inflammation via p38 MAPK pathway in acute respiratory distress syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1