Qiang Zhu, Yali Wang, Ning Yao, Xilu Ni, Cuiping Wang, Meng Wang, Lei Zhang, Wenyu Liang
{"title":"利用PacBio和Hi-C技术对濒危植物蒙古李染色体水平基因组进行组装。","authors":"Qiang Zhu, Yali Wang, Ning Yao, Xilu Ni, Cuiping Wang, Meng Wang, Lei Zhang, Wenyu Liang","doi":"10.1093/dnares/dsad012","DOIUrl":null,"url":null,"abstract":"<p><p>Prunus mongolica is an ecologically and economically important xerophytic tree native to Northwest China. Here, we report a high-quality, chromosome-level P. mongolica genome assembly integrating PacBio high-fidelity sequencing and Hi-C technology. The assembled genome was 233.17 Mb in size, with 98.89% assigned to eight pseudochromosomes. The genome had contig and scaffold N50s of 24.33 Mb and 26.54 Mb, respectively, a BUSCO completeness score of 98.76%, and CEGMA indicated that 98.47% of the assembled genome was reliably annotated. The genome contained a total of 88.54 Mb (37.97%) of repetitive sequences and 23,798 protein-coding genes. We found that P. mongolica experienced two whole-genome duplications, with the most recent event occurring ~3.57 million years ago. Phylogenetic and chromosome syntenic analyses revealed that P. mongolica was closely related to P. persica and P. dulcis. Furthermore, we identified a number of candidate genes involved in drought tolerance and fatty acid biosynthesis. These candidate genes are likely to prove useful in studies of drought tolerance and fatty acid biosynthesis in P. mongolica, and will provide important genetic resources for molecular breeding and improvement experiments in Prunus species. This high-quality reference genome will also accelerate the study of the adaptation of xerophytic plants to drought.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"30 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254739/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromosome-level genome assembly of an endangered plant Prunus mongolica using PacBio and Hi-C technologies.\",\"authors\":\"Qiang Zhu, Yali Wang, Ning Yao, Xilu Ni, Cuiping Wang, Meng Wang, Lei Zhang, Wenyu Liang\",\"doi\":\"10.1093/dnares/dsad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prunus mongolica is an ecologically and economically important xerophytic tree native to Northwest China. Here, we report a high-quality, chromosome-level P. mongolica genome assembly integrating PacBio high-fidelity sequencing and Hi-C technology. The assembled genome was 233.17 Mb in size, with 98.89% assigned to eight pseudochromosomes. The genome had contig and scaffold N50s of 24.33 Mb and 26.54 Mb, respectively, a BUSCO completeness score of 98.76%, and CEGMA indicated that 98.47% of the assembled genome was reliably annotated. The genome contained a total of 88.54 Mb (37.97%) of repetitive sequences and 23,798 protein-coding genes. We found that P. mongolica experienced two whole-genome duplications, with the most recent event occurring ~3.57 million years ago. Phylogenetic and chromosome syntenic analyses revealed that P. mongolica was closely related to P. persica and P. dulcis. Furthermore, we identified a number of candidate genes involved in drought tolerance and fatty acid biosynthesis. These candidate genes are likely to prove useful in studies of drought tolerance and fatty acid biosynthesis in P. mongolica, and will provide important genetic resources for molecular breeding and improvement experiments in Prunus species. This high-quality reference genome will also accelerate the study of the adaptation of xerophytic plants to drought.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\"30 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254739/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsad012\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsad012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Chromosome-level genome assembly of an endangered plant Prunus mongolica using PacBio and Hi-C technologies.
Prunus mongolica is an ecologically and economically important xerophytic tree native to Northwest China. Here, we report a high-quality, chromosome-level P. mongolica genome assembly integrating PacBio high-fidelity sequencing and Hi-C technology. The assembled genome was 233.17 Mb in size, with 98.89% assigned to eight pseudochromosomes. The genome had contig and scaffold N50s of 24.33 Mb and 26.54 Mb, respectively, a BUSCO completeness score of 98.76%, and CEGMA indicated that 98.47% of the assembled genome was reliably annotated. The genome contained a total of 88.54 Mb (37.97%) of repetitive sequences and 23,798 protein-coding genes. We found that P. mongolica experienced two whole-genome duplications, with the most recent event occurring ~3.57 million years ago. Phylogenetic and chromosome syntenic analyses revealed that P. mongolica was closely related to P. persica and P. dulcis. Furthermore, we identified a number of candidate genes involved in drought tolerance and fatty acid biosynthesis. These candidate genes are likely to prove useful in studies of drought tolerance and fatty acid biosynthesis in P. mongolica, and will provide important genetic resources for molecular breeding and improvement experiments in Prunus species. This high-quality reference genome will also accelerate the study of the adaptation of xerophytic plants to drought.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.