Marwa Monier Mahmoud Refaie, Manar Fouli Gaber Ibrahim, Michael Atef Fawzy, Elshymaa A Abdel-Hakeem, Eman Shaaban Mahmoud Abd El Rahman, Nagwa M Zenhom, Sayed Shehata
{"title":"罗氟司特对异丙肾上腺碱诱导心肌损伤保护作用的分子机制。","authors":"Marwa Monier Mahmoud Refaie, Manar Fouli Gaber Ibrahim, Michael Atef Fawzy, Elshymaa A Abdel-Hakeem, Eman Shaaban Mahmoud Abd El Rahman, Nagwa M Zenhom, Sayed Shehata","doi":"10.1080/08923973.2023.2222228","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocardial necrosis is one of the most common cardiac and pathological diseases. Unfortunately, using the available medical treatment is not sufficient to rescue the myocardium. So that, we aimed in our model to study the possible cardioprotective effect of roflumilast (ROF) in an experimental model of induced myocardial injury using a toxic dose of isoprenaline (ISO) and detecting the role of vascular endothelial growth factor/endothelial nitric oxide synthase (VEGF/eNOS) and cyclic guanosine monophosphate/cyclic adenosine monophosphate/ sirtuin1 (cGMP/cAMP/SIRT1) signaling cascade.</p><p><strong>Materials and methods: </strong>Animals were divided into five groups; control, ISO given group (150 mg/kg) i.p. on the 4th and 5th day, 3 ROF co-administered groups in different doses (0.25, 0.5, 1 mg/kg/day) for 5 days.</p><p><strong>Results: </strong>Our data revealed that ISO could induce cardiac toxicity as manifested by significant increases in troponin I, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and cleaved caspase-3 with toxic histopathological changes. Meanwhile, there were significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, eNOS, cGMP, cAMP and SIRT1. However, co-administration of ROF showed significant improvement and normalization of ISO induced cardiac damage.</p><p><strong>Conclusion: </strong>We concluded that ROF successfully reduced ISO induced myocardial injury and this could be attributed to modulation of PDE4, VEGF/eNOS and cGMP/cAMP/SIRT1 signaling pathways with antioxidant, anti-inflammatory, and anti-apoptotic properties.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms mediate roflumilast protective effect against isoprenaline-induced myocardial injury.\",\"authors\":\"Marwa Monier Mahmoud Refaie, Manar Fouli Gaber Ibrahim, Michael Atef Fawzy, Elshymaa A Abdel-Hakeem, Eman Shaaban Mahmoud Abd El Rahman, Nagwa M Zenhom, Sayed Shehata\",\"doi\":\"10.1080/08923973.2023.2222228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myocardial necrosis is one of the most common cardiac and pathological diseases. Unfortunately, using the available medical treatment is not sufficient to rescue the myocardium. So that, we aimed in our model to study the possible cardioprotective effect of roflumilast (ROF) in an experimental model of induced myocardial injury using a toxic dose of isoprenaline (ISO) and detecting the role of vascular endothelial growth factor/endothelial nitric oxide synthase (VEGF/eNOS) and cyclic guanosine monophosphate/cyclic adenosine monophosphate/ sirtuin1 (cGMP/cAMP/SIRT1) signaling cascade.</p><p><strong>Materials and methods: </strong>Animals were divided into five groups; control, ISO given group (150 mg/kg) i.p. on the 4th and 5th day, 3 ROF co-administered groups in different doses (0.25, 0.5, 1 mg/kg/day) for 5 days.</p><p><strong>Results: </strong>Our data revealed that ISO could induce cardiac toxicity as manifested by significant increases in troponin I, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and cleaved caspase-3 with toxic histopathological changes. Meanwhile, there were significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, eNOS, cGMP, cAMP and SIRT1. However, co-administration of ROF showed significant improvement and normalization of ISO induced cardiac damage.</p><p><strong>Conclusion: </strong>We concluded that ROF successfully reduced ISO induced myocardial injury and this could be attributed to modulation of PDE4, VEGF/eNOS and cGMP/cAMP/SIRT1 signaling pathways with antioxidant, anti-inflammatory, and anti-apoptotic properties.</p>\",\"PeriodicalId\":13420,\"journal\":{\"name\":\"Immunopharmacology and Immunotoxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunopharmacology and Immunotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08923973.2023.2222228\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2023.2222228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Molecular mechanisms mediate roflumilast protective effect against isoprenaline-induced myocardial injury.
Background: Myocardial necrosis is one of the most common cardiac and pathological diseases. Unfortunately, using the available medical treatment is not sufficient to rescue the myocardium. So that, we aimed in our model to study the possible cardioprotective effect of roflumilast (ROF) in an experimental model of induced myocardial injury using a toxic dose of isoprenaline (ISO) and detecting the role of vascular endothelial growth factor/endothelial nitric oxide synthase (VEGF/eNOS) and cyclic guanosine monophosphate/cyclic adenosine monophosphate/ sirtuin1 (cGMP/cAMP/SIRT1) signaling cascade.
Materials and methods: Animals were divided into five groups; control, ISO given group (150 mg/kg) i.p. on the 4th and 5th day, 3 ROF co-administered groups in different doses (0.25, 0.5, 1 mg/kg/day) for 5 days.
Results: Our data revealed that ISO could induce cardiac toxicity as manifested by significant increases in troponin I, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and cleaved caspase-3 with toxic histopathological changes. Meanwhile, there were significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, eNOS, cGMP, cAMP and SIRT1. However, co-administration of ROF showed significant improvement and normalization of ISO induced cardiac damage.
Conclusion: We concluded that ROF successfully reduced ISO induced myocardial injury and this could be attributed to modulation of PDE4, VEGF/eNOS and cGMP/cAMP/SIRT1 signaling pathways with antioxidant, anti-inflammatory, and anti-apoptotic properties.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).