较低剂量的感染可产生更好的针对弓形虫的长期免疫反应。

Magali M Moretto, Jie Chen, Morgan Meador, Jasmine Phan, Imtiaz A Khan
{"title":"较低剂量的感染可产生更好的针对弓形虫的长期免疫反应。","authors":"Magali M Moretto,&nbsp;Jie Chen,&nbsp;Morgan Meador,&nbsp;Jasmine Phan,&nbsp;Imtiaz A Khan","doi":"10.4049/immunohorizons.2300006","DOIUrl":null,"url":null,"abstract":"<p><p>Toxoplasma gondii, an obligate intracellular pathogen, induces a strong immune response in the infected host. In the encephalitis model of infection, long-term protective immunity is mediated by CD8 T cells, with the CD4 T cell population providing important help. Most of the immune studies have used a 10- to 20-cyst dose of T. gondii, which leads to T cell dysfunctionality during the late phase of chronic infection and increases the chances of reactivation. In the current study, we compared the immune response of mice orally infected with either 2 or 10 cysts of T. gondii. During the acute phase, we demonstrate that the lower dose of infection generates a reduced number of CD4 and CD8 T cells, but the frequency of functional CD4 or CD8 T cells is similar in animals infected with two different doses. However, Ag-experienced T cells (both CD4 and CD8) are better maintained in lower dose-infected mice at 8 wk postinfection, with an increase number functional cells that exhibit lower multiple inhibitory receptor expression. In addition to better long-term T cell immunity, animals infected with a lower dose display reduced inflammation manifested by lesser Ag-specific T cell and cytokine responses during the very early stage of the acute infection. Our studies suggest a previously unappreciated role of dose-dependent early programming/imprinting of the long-term CD4/CD8 T cell response during T. gondii infection. These observations point to the need for an in-depth analysis of how early events shape long-term immunity against this pathogen.</p>","PeriodicalId":13448,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563383/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Lower Dose of Infection Generates a Better Long-Term Immune Response against Toxoplasma gondii.\",\"authors\":\"Magali M Moretto,&nbsp;Jie Chen,&nbsp;Morgan Meador,&nbsp;Jasmine Phan,&nbsp;Imtiaz A Khan\",\"doi\":\"10.4049/immunohorizons.2300006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Toxoplasma gondii, an obligate intracellular pathogen, induces a strong immune response in the infected host. In the encephalitis model of infection, long-term protective immunity is mediated by CD8 T cells, with the CD4 T cell population providing important help. Most of the immune studies have used a 10- to 20-cyst dose of T. gondii, which leads to T cell dysfunctionality during the late phase of chronic infection and increases the chances of reactivation. In the current study, we compared the immune response of mice orally infected with either 2 or 10 cysts of T. gondii. During the acute phase, we demonstrate that the lower dose of infection generates a reduced number of CD4 and CD8 T cells, but the frequency of functional CD4 or CD8 T cells is similar in animals infected with two different doses. However, Ag-experienced T cells (both CD4 and CD8) are better maintained in lower dose-infected mice at 8 wk postinfection, with an increase number functional cells that exhibit lower multiple inhibitory receptor expression. In addition to better long-term T cell immunity, animals infected with a lower dose display reduced inflammation manifested by lesser Ag-specific T cell and cytokine responses during the very early stage of the acute infection. Our studies suggest a previously unappreciated role of dose-dependent early programming/imprinting of the long-term CD4/CD8 T cell response during T. gondii infection. These observations point to the need for an in-depth analysis of how early events shape long-term immunity against this pathogen.</p>\",\"PeriodicalId\":13448,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563383/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4049/immunohorizons.2300006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2300006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弓形虫是一种专性细胞内病原体,在感染宿主中诱导强烈的免疫反应。在脑炎感染模型中,长期保护性免疫是由CD8 T细胞介导的,CD4 T细胞群提供了重要帮助。大多数免疫研究都使用了10到20个囊肿剂量的弓形虫,这会导致慢性感染后期的T细胞功能障碍,并增加重新激活的机会。在目前的研究中,我们比较了口服感染2个或10个弓形虫囊肿的小鼠的免疫反应。在急性期,我们证明,较低剂量的感染会产生数量减少的CD4和CD8 T细胞,但在感染两种不同剂量的动物中,功能性CD4或CD8 T淋巴细胞的频率相似。然而,在感染后8周,在低剂量感染的小鼠中,经历Ag的T细胞(CD4和CD8)得到了更好的维持,表现出较低的多重抑制性受体表达的功能细胞数量增加。除了更好的长期T细胞免疫外,在急性感染的早期阶段,用较低剂量感染的动物表现出较少的Ag特异性T细胞和细胞因子反应所表现出的炎症减少。我们的研究表明,在弓形虫感染期间,长期CD4/CD8 T细胞反应的剂量依赖性早期编程/印记的作用以前未被重视。这些观察结果表明,需要深入分析早期事件如何形成对这种病原体的长期免疫力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lower Dose of Infection Generates a Better Long-Term Immune Response against Toxoplasma gondii.

Toxoplasma gondii, an obligate intracellular pathogen, induces a strong immune response in the infected host. In the encephalitis model of infection, long-term protective immunity is mediated by CD8 T cells, with the CD4 T cell population providing important help. Most of the immune studies have used a 10- to 20-cyst dose of T. gondii, which leads to T cell dysfunctionality during the late phase of chronic infection and increases the chances of reactivation. In the current study, we compared the immune response of mice orally infected with either 2 or 10 cysts of T. gondii. During the acute phase, we demonstrate that the lower dose of infection generates a reduced number of CD4 and CD8 T cells, but the frequency of functional CD4 or CD8 T cells is similar in animals infected with two different doses. However, Ag-experienced T cells (both CD4 and CD8) are better maintained in lower dose-infected mice at 8 wk postinfection, with an increase number functional cells that exhibit lower multiple inhibitory receptor expression. In addition to better long-term T cell immunity, animals infected with a lower dose display reduced inflammation manifested by lesser Ag-specific T cell and cytokine responses during the very early stage of the acute infection. Our studies suggest a previously unappreciated role of dose-dependent early programming/imprinting of the long-term CD4/CD8 T cell response during T. gondii infection. These observations point to the need for an in-depth analysis of how early events shape long-term immunity against this pathogen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patients on the Transplant Waiting List Have Anti-Swine Leukocyte Antigen Class I Antibodies. Acute Respiratory Illness Is Associated with Memory T Cell Differentiation and Other Immune Cell Changes in an Age-Associated Manner. Sequential Early-Life Infections Alter Peripheral Blood Transcriptomics in Aging Female Mice but Not the Response to De Novo Infection with Influenza Virus or M. tuberculosis. Disease in the Pld4thss/thss Model of Murine Lupus Requires TLR9. Diplomate in Medical Laboratory Immunology Certification Examination: A New Chapter for Medical Laboratory Immunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1