David A Menassa, Janja Kopić, Alisa Junaković, Ivica Kostović, Željka Krsnik
{"title":"瞬时人类神经发育结构中的小胶质细胞特征。","authors":"David A Menassa, Janja Kopić, Alisa Junaković, Ivica Kostović, Željka Krsnik","doi":"10.1159/000528911","DOIUrl":null,"url":null,"abstract":"<p><p>Human neurodevelopment is characterized by the appearance, development, and disappearance or transformation of various transient structures that underlie the establishment of connectivity within and between future cortical and subcortical areas. Examples of transient structures in the forebrain (among many others) include the subpial granular layer and the subplate zone. We have previously characterized the precise spatiotemporal dynamics of microglia in the human telencephalon. Here, we describe the diversity of microglial morphologies in the subpial granular layer and the subplate zone. Where possible, we couple the predominant morphological phenotype with functional characterizations to infer tentative roles for microglia in a changing neurodevelopmental landscape. We interpret these findings within the context of relevant morphogenetic and neurogenetic events in humans. Due to the unique genetic, molecular, and anatomical features of the human brain and because many human neurological and psychiatric diseases have their origins during development, these structures deserve special attention.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 1","pages":"1-7"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015752/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microglial Characterization in Transient Human Neurodevelopmental Structures.\",\"authors\":\"David A Menassa, Janja Kopić, Alisa Junaković, Ivica Kostović, Željka Krsnik\",\"doi\":\"10.1159/000528911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human neurodevelopment is characterized by the appearance, development, and disappearance or transformation of various transient structures that underlie the establishment of connectivity within and between future cortical and subcortical areas. Examples of transient structures in the forebrain (among many others) include the subpial granular layer and the subplate zone. We have previously characterized the precise spatiotemporal dynamics of microglia in the human telencephalon. Here, we describe the diversity of microglial morphologies in the subpial granular layer and the subplate zone. Where possible, we couple the predominant morphological phenotype with functional characterizations to infer tentative roles for microglia in a changing neurodevelopmental landscape. We interpret these findings within the context of relevant morphogenetic and neurogenetic events in humans. Due to the unique genetic, molecular, and anatomical features of the human brain and because many human neurological and psychiatric diseases have their origins during development, these structures deserve special attention.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\"45 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015752/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000528911\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000528911","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Microglial Characterization in Transient Human Neurodevelopmental Structures.
Human neurodevelopment is characterized by the appearance, development, and disappearance or transformation of various transient structures that underlie the establishment of connectivity within and between future cortical and subcortical areas. Examples of transient structures in the forebrain (among many others) include the subpial granular layer and the subplate zone. We have previously characterized the precise spatiotemporal dynamics of microglia in the human telencephalon. Here, we describe the diversity of microglial morphologies in the subpial granular layer and the subplate zone. Where possible, we couple the predominant morphological phenotype with functional characterizations to infer tentative roles for microglia in a changing neurodevelopmental landscape. We interpret these findings within the context of relevant morphogenetic and neurogenetic events in humans. Due to the unique genetic, molecular, and anatomical features of the human brain and because many human neurological and psychiatric diseases have their origins during development, these structures deserve special attention.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.