{"title":"开发一种具有较低表面张力的全新全氟辛烷磺酸替代品,以最大限度地减少环境负担。","authors":"Zhen Zhou, Rui Guo, Bolei Chen, Ling Wang, Huiming Cao, Cuiyun Wei, Ming Hu, Yuhang Zhan, Shutao Li, Yawei Wang, Yong Liang","doi":"10.1007/s40242-023-3030-4","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the technical performance of related industrial products is an efficient strategy to reducing the application quantities and environmental burden for toxic chemicals. A novel polyfluoroalkyl surfactant potassium 1,1,2,2,3,3,4,4-octafluoro-4-(perfluorobutoxy)butane-1-sulfonate(F404) was synthesized by a commercializable route. It had a surface tension(γ) of 18.2 mN/m at the critical micelle concentration(CMC, 1.04 g/L), significantly lower than that of perfluorooctane sulfonate(PFOS, <i>ca.</i> 33.0 mN/m, 0.72 g/L), and exhibited remarkable suppression of chromium-fog at a dose half that of PFOS. The half maximal inhibitory concentration(IC<sub>50</sub>) values in HepG2 cells and the lethal concentration of 50%(LC50) in zebrafish embryos after 72 hpf indicated a lower toxicity for F404 in comparison to PFOS. In a UV/sulphite system, 89.3% of F404 were decomposed after 3 h, representing a defluorination efficiency of 43%. The cleavage of the ether C-O bond during the decomposition would be expected to form a short chain·C<sub>4</sub>F<sub>9</sub> as the position of the ether C-O in the F404 fluorocarbon chains is C4-O5. The ether unit is introduced in the perfluoroalkyl chain to improve water solubility, biocompatibility and degradation, thereby minimizing the environmental burden.</p><p><strong>Electronic supplementary material: </strong>Supplementary material is available in the online version of this article at 10.1007/s40242-023-3030-4.</p>","PeriodicalId":9785,"journal":{"name":"Chemical Research in Chinese Universities","volume":"39 3","pages":"408-414"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a Completely New PFOS Alternative with Lower Surface Tension for Minimizing the Environmental Burden.\",\"authors\":\"Zhen Zhou, Rui Guo, Bolei Chen, Ling Wang, Huiming Cao, Cuiyun Wei, Ming Hu, Yuhang Zhan, Shutao Li, Yawei Wang, Yong Liang\",\"doi\":\"10.1007/s40242-023-3030-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Improving the technical performance of related industrial products is an efficient strategy to reducing the application quantities and environmental burden for toxic chemicals. A novel polyfluoroalkyl surfactant potassium 1,1,2,2,3,3,4,4-octafluoro-4-(perfluorobutoxy)butane-1-sulfonate(F404) was synthesized by a commercializable route. It had a surface tension(γ) of 18.2 mN/m at the critical micelle concentration(CMC, 1.04 g/L), significantly lower than that of perfluorooctane sulfonate(PFOS, <i>ca.</i> 33.0 mN/m, 0.72 g/L), and exhibited remarkable suppression of chromium-fog at a dose half that of PFOS. The half maximal inhibitory concentration(IC<sub>50</sub>) values in HepG2 cells and the lethal concentration of 50%(LC50) in zebrafish embryos after 72 hpf indicated a lower toxicity for F404 in comparison to PFOS. In a UV/sulphite system, 89.3% of F404 were decomposed after 3 h, representing a defluorination efficiency of 43%. The cleavage of the ether C-O bond during the decomposition would be expected to form a short chain·C<sub>4</sub>F<sub>9</sub> as the position of the ether C-O in the F404 fluorocarbon chains is C4-O5. The ether unit is introduced in the perfluoroalkyl chain to improve water solubility, biocompatibility and degradation, thereby minimizing the environmental burden.</p><p><strong>Electronic supplementary material: </strong>Supplementary material is available in the online version of this article at 10.1007/s40242-023-3030-4.</p>\",\"PeriodicalId\":9785,\"journal\":{\"name\":\"Chemical Research in Chinese Universities\",\"volume\":\"39 3\",\"pages\":\"408-414\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Chinese Universities\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s40242-023-3030-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Chinese Universities","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s40242-023-3030-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of a Completely New PFOS Alternative with Lower Surface Tension for Minimizing the Environmental Burden.
Improving the technical performance of related industrial products is an efficient strategy to reducing the application quantities and environmental burden for toxic chemicals. A novel polyfluoroalkyl surfactant potassium 1,1,2,2,3,3,4,4-octafluoro-4-(perfluorobutoxy)butane-1-sulfonate(F404) was synthesized by a commercializable route. It had a surface tension(γ) of 18.2 mN/m at the critical micelle concentration(CMC, 1.04 g/L), significantly lower than that of perfluorooctane sulfonate(PFOS, ca. 33.0 mN/m, 0.72 g/L), and exhibited remarkable suppression of chromium-fog at a dose half that of PFOS. The half maximal inhibitory concentration(IC50) values in HepG2 cells and the lethal concentration of 50%(LC50) in zebrafish embryos after 72 hpf indicated a lower toxicity for F404 in comparison to PFOS. In a UV/sulphite system, 89.3% of F404 were decomposed after 3 h, representing a defluorination efficiency of 43%. The cleavage of the ether C-O bond during the decomposition would be expected to form a short chain·C4F9 as the position of the ether C-O in the F404 fluorocarbon chains is C4-O5. The ether unit is introduced in the perfluoroalkyl chain to improve water solubility, biocompatibility and degradation, thereby minimizing the environmental burden.
Electronic supplementary material: Supplementary material is available in the online version of this article at 10.1007/s40242-023-3030-4.
期刊介绍:
The journal publishes research articles, letters/communications and reviews written by faculty members, researchers and postgraduates in universities, colleges and research institutes all over China and overseas. It reports the latest and most creative results of important fundamental research in all aspects of chemistry and of developments with significant consequences across subdisciplines.
Main research areas include (but are not limited to):
Organic chemistry (synthesis, characterization, and application);
Inorganic chemistry (bio-inorganic chemistry, inorganic material chemistry);
Analytical chemistry (especially chemometrics and the application of instrumental analysis and spectroscopy);
Physical chemistry (mechanisms, catalysis, thermodynamics and dynamics);
Polymer chemistry and polymer physics (mechanisms, material, catalysis, thermodynamics and dynamics);
Quantum chemistry (quantum mechanical theory, quantum partition function, quantum statistical mechanics);
Biochemistry;
Biochemical engineering;
Medicinal chemistry;
Nanoscience (nanochemistry, nanomaterials).