{"title":"根据德国血液警戒数据(2011-2020)的输血传播性细菌感染分析。","authors":"Stefano Orru', Doris Oberle, Margarethe Heiden, Susanne Müller, Oleg Krut, Markus Benedikt Funk","doi":"10.1159/000526761","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Following the first assessment of the effects of safety measures taken against transfusion-transmitted bacterial infections (TTBI), the Paul-Ehrlich-Institut (PEI) decided to newly analyze risk minimization measures (RMM) using German hemovigilance data from 2011 to 2020, focusing on blood components, recipients, and bacterial strains.</p><p><strong>Materials and methods: </strong>The PEI assessed the imputability of all reported serious adverse reactions (SAR) relying mainly on microbiological test results. Reporting rates (RR) of suspected, confirmed, and fatal confirmed TTBI were calculated and compared to the previous reporting 10-year period (2001-2010) using Poisson regression to estimate RR ratios (RRR). Furthermore, details on blood component age, patients' medical history, and bacterial pathogenicity were collected.</p><p><strong>Results: </strong>With respect to the previous 10-year period, the number of suspected TTBI increased (<i>n</i> = 403), while fewer cases were confirmed (<i>n</i> = 40); the number of deaths remained more or less unchanged (<i>n</i> = 8). The RR for suspected TTBI were 7.9, 18.7, and 1.6 cases per million units transfused for red blood cells (RBC), platelet concentrates (PC), and fresh frozen plasma (FFP), respectively. RRR showed a statistically significant 2.5-fold increase in the RR for suspected TTBI after RBC administration from 2001-2010 to the period under review (<i>p</i> < 0.0001). The RR for confirmed TTBI were 0.4, 5.0, and 0.0 cases per million units transfused for RBC, PC, and FFP, respectively. Compared to the period 2001-2010, there was a statistically significant decrease in the RR of confirmed TTBI by half for PC (<i>p</i> = 0.0052). The RR for confirmed PC-caused TTBI with fatal outcome was 1.4 cases per million units transfused. Regardless of type of blood product transfused and outcome of SAR, the majority of TTBI occurred after administration of a product at the end of shelf life (40.0%) and to recipients of advanced age (median age: 68.5 years) and/or with severe immunosuppression (72.5%) due to decreased myelopoiesis (62.5%). 72.5% of the involved bacteria had a middle/high human pathogenicity.</p><p><strong>Conclusion: </strong>Despite a significant decrease in confirmed TTBI following PC transfusion in Germany after implementation of RMM, the current manufacture of blood products can still not prevent TTBI with fatal outcomes. As demonstrated in various countries, RMM like bacterial screening or pathogen reduction may measurably improve the safety of blood transfusion.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/0c/tmh-0050-0144.PMC10090970.pdf","citationCount":"1","resultStr":"{\"title\":\"Analysis of Transfusion-Transmitted Bacterial Infections according to German Hemovigilance Data (2011-2020).\",\"authors\":\"Stefano Orru', Doris Oberle, Margarethe Heiden, Susanne Müller, Oleg Krut, Markus Benedikt Funk\",\"doi\":\"10.1159/000526761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Following the first assessment of the effects of safety measures taken against transfusion-transmitted bacterial infections (TTBI), the Paul-Ehrlich-Institut (PEI) decided to newly analyze risk minimization measures (RMM) using German hemovigilance data from 2011 to 2020, focusing on blood components, recipients, and bacterial strains.</p><p><strong>Materials and methods: </strong>The PEI assessed the imputability of all reported serious adverse reactions (SAR) relying mainly on microbiological test results. Reporting rates (RR) of suspected, confirmed, and fatal confirmed TTBI were calculated and compared to the previous reporting 10-year period (2001-2010) using Poisson regression to estimate RR ratios (RRR). Furthermore, details on blood component age, patients' medical history, and bacterial pathogenicity were collected.</p><p><strong>Results: </strong>With respect to the previous 10-year period, the number of suspected TTBI increased (<i>n</i> = 403), while fewer cases were confirmed (<i>n</i> = 40); the number of deaths remained more or less unchanged (<i>n</i> = 8). The RR for suspected TTBI were 7.9, 18.7, and 1.6 cases per million units transfused for red blood cells (RBC), platelet concentrates (PC), and fresh frozen plasma (FFP), respectively. RRR showed a statistically significant 2.5-fold increase in the RR for suspected TTBI after RBC administration from 2001-2010 to the period under review (<i>p</i> < 0.0001). The RR for confirmed TTBI were 0.4, 5.0, and 0.0 cases per million units transfused for RBC, PC, and FFP, respectively. Compared to the period 2001-2010, there was a statistically significant decrease in the RR of confirmed TTBI by half for PC (<i>p</i> = 0.0052). The RR for confirmed PC-caused TTBI with fatal outcome was 1.4 cases per million units transfused. Regardless of type of blood product transfused and outcome of SAR, the majority of TTBI occurred after administration of a product at the end of shelf life (40.0%) and to recipients of advanced age (median age: 68.5 years) and/or with severe immunosuppression (72.5%) due to decreased myelopoiesis (62.5%). 72.5% of the involved bacteria had a middle/high human pathogenicity.</p><p><strong>Conclusion: </strong>Despite a significant decrease in confirmed TTBI following PC transfusion in Germany after implementation of RMM, the current manufacture of blood products can still not prevent TTBI with fatal outcomes. As demonstrated in various countries, RMM like bacterial screening or pathogen reduction may measurably improve the safety of blood transfusion.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/0c/tmh-0050-0144.PMC10090970.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000526761\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000526761","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of Transfusion-Transmitted Bacterial Infections according to German Hemovigilance Data (2011-2020).
Introduction: Following the first assessment of the effects of safety measures taken against transfusion-transmitted bacterial infections (TTBI), the Paul-Ehrlich-Institut (PEI) decided to newly analyze risk minimization measures (RMM) using German hemovigilance data from 2011 to 2020, focusing on blood components, recipients, and bacterial strains.
Materials and methods: The PEI assessed the imputability of all reported serious adverse reactions (SAR) relying mainly on microbiological test results. Reporting rates (RR) of suspected, confirmed, and fatal confirmed TTBI were calculated and compared to the previous reporting 10-year period (2001-2010) using Poisson regression to estimate RR ratios (RRR). Furthermore, details on blood component age, patients' medical history, and bacterial pathogenicity were collected.
Results: With respect to the previous 10-year period, the number of suspected TTBI increased (n = 403), while fewer cases were confirmed (n = 40); the number of deaths remained more or less unchanged (n = 8). The RR for suspected TTBI were 7.9, 18.7, and 1.6 cases per million units transfused for red blood cells (RBC), platelet concentrates (PC), and fresh frozen plasma (FFP), respectively. RRR showed a statistically significant 2.5-fold increase in the RR for suspected TTBI after RBC administration from 2001-2010 to the period under review (p < 0.0001). The RR for confirmed TTBI were 0.4, 5.0, and 0.0 cases per million units transfused for RBC, PC, and FFP, respectively. Compared to the period 2001-2010, there was a statistically significant decrease in the RR of confirmed TTBI by half for PC (p = 0.0052). The RR for confirmed PC-caused TTBI with fatal outcome was 1.4 cases per million units transfused. Regardless of type of blood product transfused and outcome of SAR, the majority of TTBI occurred after administration of a product at the end of shelf life (40.0%) and to recipients of advanced age (median age: 68.5 years) and/or with severe immunosuppression (72.5%) due to decreased myelopoiesis (62.5%). 72.5% of the involved bacteria had a middle/high human pathogenicity.
Conclusion: Despite a significant decrease in confirmed TTBI following PC transfusion in Germany after implementation of RMM, the current manufacture of blood products can still not prevent TTBI with fatal outcomes. As demonstrated in various countries, RMM like bacterial screening or pathogen reduction may measurably improve the safety of blood transfusion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.