Devrim Kayali, Nemah Abu Shama, Suleyman Asir, Kamil Dimililer
{"title":"使用电化学方法对亚铁氰化钾进行定性分类的基于机器学习的模型。","authors":"Devrim Kayali, Nemah Abu Shama, Suleyman Asir, Kamil Dimililer","doi":"10.1007/s11227-023-05137-y","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is one of the trace elements that plays a vital role in the human immune system, especially against variants of SARS-CoV-2 virus. Electrochemical methods are convenient for the detection due to the simplicity of instrumentation available for different analyses. The square wave voltammetry (SQWV) and differential pulse voltammetry (DPV) are useful electrochemical voltammetric techniques for diverse types of compounds such as heavy metals. The basic reason is the increased sensitivity by lowering the capacitive current. In this study, machine learning models were improved to classify concentrations of an analyte depending on the voltammograms obtained alone. SQWV and DPV were used to quantify the concentrations of ferrous ions (Fe<math><msup><mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msup></math>) in potassium ferrocyanide (K<math><msub><mrow></mrow><mn>4</mn></msub></math>Fe(CN)<math><msub><mrow></mrow><mn>6</mn></msub></math>), validated by machine learning models for the data classifications. The greatest classifier algorithms models Backpropagation Neural Networks, Gaussian Naive Bayes, Logistic Regression, K-Nearest Neighbors Algorithm, K-Means clustering, and Random Forest were used as data classifiers, based on the data sets obtained from the measured chemical. Once competed to other algorithms models used previously for the data classification, ours get greater accuracy, maximum accuracy of 100% was obtained for each analyte in 25 s for the datasets.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"79 11","pages":"12472-12491"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010652/pdf/","citationCount":"3","resultStr":"{\"title\":\"Machine learning-based models for the qualitative classification of potassium ferrocyanide using electrochemical methods.\",\"authors\":\"Devrim Kayali, Nemah Abu Shama, Suleyman Asir, Kamil Dimililer\",\"doi\":\"10.1007/s11227-023-05137-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron is one of the trace elements that plays a vital role in the human immune system, especially against variants of SARS-CoV-2 virus. Electrochemical methods are convenient for the detection due to the simplicity of instrumentation available for different analyses. The square wave voltammetry (SQWV) and differential pulse voltammetry (DPV) are useful electrochemical voltammetric techniques for diverse types of compounds such as heavy metals. The basic reason is the increased sensitivity by lowering the capacitive current. In this study, machine learning models were improved to classify concentrations of an analyte depending on the voltammograms obtained alone. SQWV and DPV were used to quantify the concentrations of ferrous ions (Fe<math><msup><mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msup></math>) in potassium ferrocyanide (K<math><msub><mrow></mrow><mn>4</mn></msub></math>Fe(CN)<math><msub><mrow></mrow><mn>6</mn></msub></math>), validated by machine learning models for the data classifications. The greatest classifier algorithms models Backpropagation Neural Networks, Gaussian Naive Bayes, Logistic Regression, K-Nearest Neighbors Algorithm, K-Means clustering, and Random Forest were used as data classifiers, based on the data sets obtained from the measured chemical. Once competed to other algorithms models used previously for the data classification, ours get greater accuracy, maximum accuracy of 100% was obtained for each analyte in 25 s for the datasets.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"79 11\",\"pages\":\"12472-12491\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010652/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-023-05137-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05137-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Machine learning-based models for the qualitative classification of potassium ferrocyanide using electrochemical methods.
Iron is one of the trace elements that plays a vital role in the human immune system, especially against variants of SARS-CoV-2 virus. Electrochemical methods are convenient for the detection due to the simplicity of instrumentation available for different analyses. The square wave voltammetry (SQWV) and differential pulse voltammetry (DPV) are useful electrochemical voltammetric techniques for diverse types of compounds such as heavy metals. The basic reason is the increased sensitivity by lowering the capacitive current. In this study, machine learning models were improved to classify concentrations of an analyte depending on the voltammograms obtained alone. SQWV and DPV were used to quantify the concentrations of ferrous ions (Fe) in potassium ferrocyanide (KFe(CN)), validated by machine learning models for the data classifications. The greatest classifier algorithms models Backpropagation Neural Networks, Gaussian Naive Bayes, Logistic Regression, K-Nearest Neighbors Algorithm, K-Means clustering, and Random Forest were used as data classifiers, based on the data sets obtained from the measured chemical. Once competed to other algorithms models used previously for the data classification, ours get greater accuracy, maximum accuracy of 100% was obtained for each analyte in 25 s for the datasets.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.