口腔黏膜黏附疫苗递送系统。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2023-07-01 DOI:10.1177/00220345231164111
K Mokabari, M Iriti, E M Varoni
{"title":"口腔黏膜黏附疫苗递送系统。","authors":"K Mokabari,&nbsp;M Iriti,&nbsp;E M Varoni","doi":"10.1177/00220345231164111","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccine technology has evolved continuously since its beginning, and mucosal vaccination, including intranasal, sublingual, and oral administrations, has recently gained great scientific interest. The oral mucosa represents a promising minimally invasive route for antigen delivery, mainly at sublingual and buccal mucosal sites, and it is easily accessible, immunologically rich, and able to promote an effective systemic and local immune response. The aim of this review is to provide an updated overview on the technologies for oral mucosal vaccination, with emphasis on mucoadhesive biomaterial-based delivery systems. Polymeric-based nanoparticles, multilayer films and wafers, liposomes, microneedles, and thermoresponsive gels are the most investigated strategies to deliver antigens locally, showing mucoadhesive properties, controlled release of the antigen, and the ability to enhance immunological responses. These formulations have achieved adequate properties in terms of vaccine stability, are minimally invasive, and are easy to produce and manage. To date, oral mucosa vaccine delivery systems represent a promising and open field of research. Future directions should focus on the role of these systems to induce sustained innate and adaptive immune responses, by integrating the recent advances achieved in mucoadhesion with those related to vaccine technology. Being painless, easy to administer, highly stable, safe, and effective, the antigen delivery systems via the oral mucosa may represent a useful and promising strategy for fast mass vaccination, especially during pandemic outbreaks.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mucoadhesive Vaccine Delivery Systems for the Oral Mucosa.\",\"authors\":\"K Mokabari,&nbsp;M Iriti,&nbsp;E M Varoni\",\"doi\":\"10.1177/00220345231164111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vaccine technology has evolved continuously since its beginning, and mucosal vaccination, including intranasal, sublingual, and oral administrations, has recently gained great scientific interest. The oral mucosa represents a promising minimally invasive route for antigen delivery, mainly at sublingual and buccal mucosal sites, and it is easily accessible, immunologically rich, and able to promote an effective systemic and local immune response. The aim of this review is to provide an updated overview on the technologies for oral mucosal vaccination, with emphasis on mucoadhesive biomaterial-based delivery systems. Polymeric-based nanoparticles, multilayer films and wafers, liposomes, microneedles, and thermoresponsive gels are the most investigated strategies to deliver antigens locally, showing mucoadhesive properties, controlled release of the antigen, and the ability to enhance immunological responses. These formulations have achieved adequate properties in terms of vaccine stability, are minimally invasive, and are easy to produce and manage. To date, oral mucosa vaccine delivery systems represent a promising and open field of research. Future directions should focus on the role of these systems to induce sustained innate and adaptive immune responses, by integrating the recent advances achieved in mucoadhesion with those related to vaccine technology. Being painless, easy to administer, highly stable, safe, and effective, the antigen delivery systems via the oral mucosa may represent a useful and promising strategy for fast mass vaccination, especially during pandemic outbreaks.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345231164111\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345231164111","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

疫苗技术从一开始就不断发展,粘膜疫苗接种,包括鼻内、舌下和口服,最近获得了极大的科学兴趣。口腔粘膜是一种很有前途的微创抗原递送途径,主要在舌下和颊粘膜部位,它易于接近,免疫丰富,能够促进有效的全身和局部免疫反应。这篇综述的目的是提供口腔粘膜疫苗接种技术的最新概述,重点是基于黏附的生物材料的递送系统。基于聚合物的纳米颗粒、多层膜和晶片、脂质体、微针和热反应凝胶是研究最多的局部递送抗原的策略,具有黏附特性、抗原的控制释放和增强免疫反应的能力。这些配方在疫苗稳定性方面具有足够的性能,具有最小的侵入性,易于生产和管理。迄今为止,口腔黏膜疫苗递送系统是一个有前途和开放的研究领域。未来的方向应该集中在这些系统的作用,诱导持续的先天和适应性免疫反应,通过整合最近取得的进展与那些与疫苗技术相关的粘液粘附。通过口腔黏膜的抗原递送系统无痛、易于施用、高度稳定、安全和有效,可能是一种有用的、有前途的快速大规模疫苗接种策略,特别是在大流行暴发期间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mucoadhesive Vaccine Delivery Systems for the Oral Mucosa.

Vaccine technology has evolved continuously since its beginning, and mucosal vaccination, including intranasal, sublingual, and oral administrations, has recently gained great scientific interest. The oral mucosa represents a promising minimally invasive route for antigen delivery, mainly at sublingual and buccal mucosal sites, and it is easily accessible, immunologically rich, and able to promote an effective systemic and local immune response. The aim of this review is to provide an updated overview on the technologies for oral mucosal vaccination, with emphasis on mucoadhesive biomaterial-based delivery systems. Polymeric-based nanoparticles, multilayer films and wafers, liposomes, microneedles, and thermoresponsive gels are the most investigated strategies to deliver antigens locally, showing mucoadhesive properties, controlled release of the antigen, and the ability to enhance immunological responses. These formulations have achieved adequate properties in terms of vaccine stability, are minimally invasive, and are easy to produce and manage. To date, oral mucosa vaccine delivery systems represent a promising and open field of research. Future directions should focus on the role of these systems to induce sustained innate and adaptive immune responses, by integrating the recent advances achieved in mucoadhesion with those related to vaccine technology. Being painless, easy to administer, highly stable, safe, and effective, the antigen delivery systems via the oral mucosa may represent a useful and promising strategy for fast mass vaccination, especially during pandemic outbreaks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1