Victoria Habet, Ningshan Li, Ji Qi, Gang Peng, Georgia Charkoftaki, Vasilis Vasiliou, Lokesh Sharma, Jordan S Pober, Charles Dela Cruz, Xiting Yan, Richard W Pierce
{"title":"体外循环前后气管支气管液的综合分析揭示了综合应激反应的激活和肺微血管通透性的改变。","authors":"Victoria Habet, Ningshan Li, Ji Qi, Gang Peng, Georgia Charkoftaki, Vasilis Vasiliou, Lokesh Sharma, Jordan S Pober, Charles Dela Cruz, Xiting Yan, Richard W Pierce","doi":"10.59249/KFYZ8002","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective</b>: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. <b>Methods</b>: We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB. Samples were immediately processed for single cell RNA sequencing (10x Genomics). Cell clustering, cell-type annotation, and visualization were performed, and differentially expressed genes (DEG) between serial samples were identified. Metabolomic and proteomic analyses were performed on the supernatant using mass spectrometry and a multiplex assay (SomaScan) respectively. Functional assays were done using electric cell-substrate impedance sensing to measure resistance across human pulmonary microvascular endothelial cells (HPMECs). <b>Results</b>: Analysis of eight patients showed a heterogeneous mixture of pulmonary parenchymal and immune cells. Cell clustering demonstrated time-dependent changes in the transcriptomic signature indicating altered cellular phenotypes after CPB. DEG analysis was represented by genes involved in host defense, innate immunity, and the mitochondrial respiratory transport chain. Ingenuity pathway analysis showed upregulation of the integrated stress response across all cell types after CPB. Metabolomic analysis demonstrated upregulation of ascorbate and aldarate metabolism. Unbiased proteomic analysis revealed upregulation of proteins involved in cytokine and chemokine pathways. Post-CPB patient supernatant improved HMPEC barrier function, suggesting a protective cellular response to CPB. <b>Conclusion</b>: Children who undergo CPB for cardiac surgery have distinct cell populations, transcriptional activity, and metabolism that change over time. The response to ischemia-reperfusion injury in the lower airway of children appears to be protective, with the need to identify potential targets through future investigations.</p>","PeriodicalId":48617,"journal":{"name":"Yale Journal of Biology and Medicine","volume":"96 1","pages":"23-42"},"PeriodicalIF":2.5000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/f7/yjbm_96_1_23.PMC10052603.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrated Analysis of Tracheobronchial Fluid from Before and After Cardiopulmonary Bypass Reveals Activation of the Integrated Stress Response and Altered Pulmonary Microvascular Permeability.\",\"authors\":\"Victoria Habet, Ningshan Li, Ji Qi, Gang Peng, Georgia Charkoftaki, Vasilis Vasiliou, Lokesh Sharma, Jordan S Pober, Charles Dela Cruz, Xiting Yan, Richard W Pierce\",\"doi\":\"10.59249/KFYZ8002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective</b>: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. <b>Methods</b>: We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB. Samples were immediately processed for single cell RNA sequencing (10x Genomics). Cell clustering, cell-type annotation, and visualization were performed, and differentially expressed genes (DEG) between serial samples were identified. Metabolomic and proteomic analyses were performed on the supernatant using mass spectrometry and a multiplex assay (SomaScan) respectively. Functional assays were done using electric cell-substrate impedance sensing to measure resistance across human pulmonary microvascular endothelial cells (HPMECs). <b>Results</b>: Analysis of eight patients showed a heterogeneous mixture of pulmonary parenchymal and immune cells. Cell clustering demonstrated time-dependent changes in the transcriptomic signature indicating altered cellular phenotypes after CPB. DEG analysis was represented by genes involved in host defense, innate immunity, and the mitochondrial respiratory transport chain. Ingenuity pathway analysis showed upregulation of the integrated stress response across all cell types after CPB. Metabolomic analysis demonstrated upregulation of ascorbate and aldarate metabolism. Unbiased proteomic analysis revealed upregulation of proteins involved in cytokine and chemokine pathways. Post-CPB patient supernatant improved HMPEC barrier function, suggesting a protective cellular response to CPB. <b>Conclusion</b>: Children who undergo CPB for cardiac surgery have distinct cell populations, transcriptional activity, and metabolism that change over time. The response to ischemia-reperfusion injury in the lower airway of children appears to be protective, with the need to identify potential targets through future investigations.</p>\",\"PeriodicalId\":48617,\"journal\":{\"name\":\"Yale Journal of Biology and Medicine\",\"volume\":\"96 1\",\"pages\":\"23-42\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/f7/yjbm_96_1_23.PMC10052603.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yale Journal of Biology and Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.59249/KFYZ8002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yale Journal of Biology and Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.59249/KFYZ8002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Integrated Analysis of Tracheobronchial Fluid from Before and After Cardiopulmonary Bypass Reveals Activation of the Integrated Stress Response and Altered Pulmonary Microvascular Permeability.
Objective: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. Methods: We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB. Samples were immediately processed for single cell RNA sequencing (10x Genomics). Cell clustering, cell-type annotation, and visualization were performed, and differentially expressed genes (DEG) between serial samples were identified. Metabolomic and proteomic analyses were performed on the supernatant using mass spectrometry and a multiplex assay (SomaScan) respectively. Functional assays were done using electric cell-substrate impedance sensing to measure resistance across human pulmonary microvascular endothelial cells (HPMECs). Results: Analysis of eight patients showed a heterogeneous mixture of pulmonary parenchymal and immune cells. Cell clustering demonstrated time-dependent changes in the transcriptomic signature indicating altered cellular phenotypes after CPB. DEG analysis was represented by genes involved in host defense, innate immunity, and the mitochondrial respiratory transport chain. Ingenuity pathway analysis showed upregulation of the integrated stress response across all cell types after CPB. Metabolomic analysis demonstrated upregulation of ascorbate and aldarate metabolism. Unbiased proteomic analysis revealed upregulation of proteins involved in cytokine and chemokine pathways. Post-CPB patient supernatant improved HMPEC barrier function, suggesting a protective cellular response to CPB. Conclusion: Children who undergo CPB for cardiac surgery have distinct cell populations, transcriptional activity, and metabolism that change over time. The response to ischemia-reperfusion injury in the lower airway of children appears to be protective, with the need to identify potential targets through future investigations.
期刊介绍:
The Yale Journal of Biology and Medicine (YJBM) is a graduate and medical student-run, peer-reviewed, open-access journal dedicated to the publication of original research articles, scientific reviews, articles on medical history, personal perspectives on medicine, policy analyses, case reports, and symposia related to biomedical matters. YJBM is published quarterly and aims to publish articles of interest to both physicians and scientists. YJBM is and has been an internationally distributed journal with a long history of landmark articles. Our contributors feature a notable list of philosophers, statesmen, scientists, and physicians, including Ernst Cassirer, Harvey Cushing, Rene Dubos, Edward Kennedy, Donald Seldin, and Jack Strominger. Our Editorial Board consists of students and faculty members from Yale School of Medicine and Yale University Graduate School of Arts & Sciences. All manuscripts submitted to YJBM are first evaluated on the basis of scientific quality, originality, appropriateness, contribution to the field, and style. Suitable manuscripts are then subject to rigorous, fair, and rapid peer review.