激活聚集策略构建用于癌症治疗的尺寸增加纳米颗粒。

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2023-03-01 DOI:10.1002/wnan.1848
Zhenni Lu, Dongya Liu, Peng Wei, Tao Yi
{"title":"激活聚集策略构建用于癌症治疗的尺寸增加纳米颗粒。","authors":"Zhenni Lu,&nbsp;Dongya Liu,&nbsp;Peng Wei,&nbsp;Tao Yi","doi":"10.1002/wnan.1848","DOIUrl":null,"url":null,"abstract":"<p><p>The development of novel therapeutic strategies and modalities for tumors is still one of the important areas of current scientific research. Low permeability and short residence time of drugs in solid tumor areas are important reasons for the low efficiency of existing therapeutic strategies. Typically, nanoparticles with large size displayed enhanced residence time but low permeability. Therefore, to prolong the retention time of materials in solid tumors, size-increasing strategies have been developed to directly generate large-scale nanoparticles using small molecular compounds or increase the size of small nanoparticles in solid tumor areas. In this review, we summarize recently reported activatable aggregation systems that could be activated by cancer-related substances for cancer therapy and classify them by the mechanisms that lead to aggregation. In the end, we propose some potential challenges briefly from the view of our opinion. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1848"},"PeriodicalIF":6.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Activated aggregation strategies to construct size-increasing nanoparticles for cancer therapy.\",\"authors\":\"Zhenni Lu,&nbsp;Dongya Liu,&nbsp;Peng Wei,&nbsp;Tao Yi\",\"doi\":\"10.1002/wnan.1848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of novel therapeutic strategies and modalities for tumors is still one of the important areas of current scientific research. Low permeability and short residence time of drugs in solid tumor areas are important reasons for the low efficiency of existing therapeutic strategies. Typically, nanoparticles with large size displayed enhanced residence time but low permeability. Therefore, to prolong the retention time of materials in solid tumors, size-increasing strategies have been developed to directly generate large-scale nanoparticles using small molecular compounds or increase the size of small nanoparticles in solid tumor areas. In this review, we summarize recently reported activatable aggregation systems that could be activated by cancer-related substances for cancer therapy and classify them by the mechanisms that lead to aggregation. In the end, we propose some potential challenges briefly from the view of our opinion. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>\",\"PeriodicalId\":23697,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"15 2\",\"pages\":\"e1848\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1848\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1848","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

开发新的肿瘤治疗策略和模式仍然是当前科学研究的重要领域之一。药物在实体瘤区域渗透性低、停留时间短是现有治疗策略效率低的重要原因。通常情况下,大尺寸纳米颗粒的停留时间延长,但渗透率较低。因此,为了延长材料在实体瘤中的滞留时间,人们开发了增尺寸策略,利用小分子化合物直接生成大尺度纳米颗粒或增加实体瘤区域小纳米颗粒的尺寸。在这篇综述中,我们总结了最近报道的可激活的聚集系统,这些系统可以被癌症相关物质激活以用于癌症治疗,并根据导致聚集的机制对它们进行分类。最后,从我们的观点简要地提出了一些潜在的挑战。本文分类如下:治疗方法和药物发现>肿瘤疾病的纳米医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activated aggregation strategies to construct size-increasing nanoparticles for cancer therapy.

The development of novel therapeutic strategies and modalities for tumors is still one of the important areas of current scientific research. Low permeability and short residence time of drugs in solid tumor areas are important reasons for the low efficiency of existing therapeutic strategies. Typically, nanoparticles with large size displayed enhanced residence time but low permeability. Therefore, to prolong the retention time of materials in solid tumors, size-increasing strategies have been developed to directly generate large-scale nanoparticles using small molecular compounds or increase the size of small nanoparticles in solid tumor areas. In this review, we summarize recently reported activatable aggregation systems that could be activated by cancer-related substances for cancer therapy and classify them by the mechanisms that lead to aggregation. In the end, we propose some potential challenges briefly from the view of our opinion. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
期刊最新文献
Design and synthesis of bioinspired nanomaterials for biomedical application. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling "detect to treat" opportunities. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1