{"title":"老年小鼠移植脂肪干细胞后肠道菌群失调的改善","authors":"Zebiao Liu, Tao Wang, Yu Zhu, Hongxia Zhao, Zuping Zhou, Qiong Wu","doi":"10.1089/scd.2022.0257","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived stem cells (ASCs), as a cell therapy with considerable therapeutic potential, have received increasing attention in tissue repair, endocrine regulation, immune regulation, and aging and obesity research. Gut microbiota are present in all organisms and play important roles in the development of aging and obesity. Dysbiosis activates inflammatory pathways that may contribute to the development of aging and obesity. We used C57BL/6 J mice of different ages to carry out the experiment. Young mice were used as donors for ASC. Feces from the three groups were collected for 16sRNA sequencing to analyze the species composition of intestinal microorganisms, and then, predicted metabolic pathways by PICRUSt2 using 16s rRNA gene sequences. Immune cell levels in abdominal adipose tissue were assessed by flow cytometry. The content of IL-6, IL-1β, TNF-α, and lipopolysaccharides in serum was measured by ELISA kit. Our 16sRNA sequencing data showed restoration of gut microbiota diversity and an increase in beneficial flora (Akkermansia, Lactobacillus, Prevotella) 7 days after ASC transplantation. In addition, the inflammatory environment improved in older transplanted mice.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 7-8","pages":"185-196"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvements in Gut Microbiota Dysbiosis in Aged Mice Transplanted with Adipose-Derived Stem Cells.\",\"authors\":\"Zebiao Liu, Tao Wang, Yu Zhu, Hongxia Zhao, Zuping Zhou, Qiong Wu\",\"doi\":\"10.1089/scd.2022.0257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose-derived stem cells (ASCs), as a cell therapy with considerable therapeutic potential, have received increasing attention in tissue repair, endocrine regulation, immune regulation, and aging and obesity research. Gut microbiota are present in all organisms and play important roles in the development of aging and obesity. Dysbiosis activates inflammatory pathways that may contribute to the development of aging and obesity. We used C57BL/6 J mice of different ages to carry out the experiment. Young mice were used as donors for ASC. Feces from the three groups were collected for 16sRNA sequencing to analyze the species composition of intestinal microorganisms, and then, predicted metabolic pathways by PICRUSt2 using 16s rRNA gene sequences. Immune cell levels in abdominal adipose tissue were assessed by flow cytometry. The content of IL-6, IL-1β, TNF-α, and lipopolysaccharides in serum was measured by ELISA kit. Our 16sRNA sequencing data showed restoration of gut microbiota diversity and an increase in beneficial flora (Akkermansia, Lactobacillus, Prevotella) 7 days after ASC transplantation. In addition, the inflammatory environment improved in older transplanted mice.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":\"32 7-8\",\"pages\":\"185-196\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2022.0257\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0257","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Improvements in Gut Microbiota Dysbiosis in Aged Mice Transplanted with Adipose-Derived Stem Cells.
Adipose-derived stem cells (ASCs), as a cell therapy with considerable therapeutic potential, have received increasing attention in tissue repair, endocrine regulation, immune regulation, and aging and obesity research. Gut microbiota are present in all organisms and play important roles in the development of aging and obesity. Dysbiosis activates inflammatory pathways that may contribute to the development of aging and obesity. We used C57BL/6 J mice of different ages to carry out the experiment. Young mice were used as donors for ASC. Feces from the three groups were collected for 16sRNA sequencing to analyze the species composition of intestinal microorganisms, and then, predicted metabolic pathways by PICRUSt2 using 16s rRNA gene sequences. Immune cell levels in abdominal adipose tissue were assessed by flow cytometry. The content of IL-6, IL-1β, TNF-α, and lipopolysaccharides in serum was measured by ELISA kit. Our 16sRNA sequencing data showed restoration of gut microbiota diversity and an increase in beneficial flora (Akkermansia, Lactobacillus, Prevotella) 7 days after ASC transplantation. In addition, the inflammatory environment improved in older transplanted mice.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development