M Pan, Z Li, J Xu, Y Lei, C Shu, W Lao, Y Chen, X Li, H Liao, Q Luo, X Li
{"title":"界面约束水的释放显著改善了牙本质的结合。","authors":"M Pan, Z Li, J Xu, Y Lei, C Shu, W Lao, Y Chen, X Li, H Liao, Q Luo, X Li","doi":"10.1177/00220345231161006","DOIUrl":null,"url":null,"abstract":"<p><p>Water residue and replacement difficulty cause insufficient adhesive infiltration in demineralized dentin matrix (DDM), which produces a defective hybrid layer and thus a bonding durability problem, severely plaguing adhesive dentistry for decades. In this study, we propose that the unique properties of a highly hydrated interface of the porous DDM can give rise to 1 new type of interface, confined liquid water, which accounts for most of the residue water and may be the main cause of insufficient infiltration. To prove our hypothesis, 3 metal ions with increasing binding affinity and complex stability (Na<sup>+</sup>, Ca<sup>2+</sup>, and Cu<sup>2+</sup>) were introduced respectively to coordinate negatively charged groups such as -PO<sub>4</sub><sup>3-</sup>, -COO<sup>-</sup> abundant in the DDM interface. Strong chelation of Ca<sup>2+</sup> and Cu<sup>2+</sup> rapidly released the confined water, significantly improving penetration of hydrophobic adhesive monomers, while Na<sup>+</sup> had little effect. A significant decrease of defects in the hybrid layer and a much decreased modulus gap between the hybrid layer and the adhesive layer greatly optimized the microstructure and micromechanical properties of the tooth-resin bonding interface, thus improving the effectiveness and durability of dentin bonding substantially. This study paves the way for a solution to the core scientific issue of contemporary adhesive dentistry: water residue and replacement in dentin bonding, both theoretically and practically.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Release of Interface Confined Water Significantly Improves Dentin Bonding.\",\"authors\":\"M Pan, Z Li, J Xu, Y Lei, C Shu, W Lao, Y Chen, X Li, H Liao, Q Luo, X Li\",\"doi\":\"10.1177/00220345231161006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water residue and replacement difficulty cause insufficient adhesive infiltration in demineralized dentin matrix (DDM), which produces a defective hybrid layer and thus a bonding durability problem, severely plaguing adhesive dentistry for decades. In this study, we propose that the unique properties of a highly hydrated interface of the porous DDM can give rise to 1 new type of interface, confined liquid water, which accounts for most of the residue water and may be the main cause of insufficient infiltration. To prove our hypothesis, 3 metal ions with increasing binding affinity and complex stability (Na<sup>+</sup>, Ca<sup>2+</sup>, and Cu<sup>2+</sup>) were introduced respectively to coordinate negatively charged groups such as -PO<sub>4</sub><sup>3-</sup>, -COO<sup>-</sup> abundant in the DDM interface. Strong chelation of Ca<sup>2+</sup> and Cu<sup>2+</sup> rapidly released the confined water, significantly improving penetration of hydrophobic adhesive monomers, while Na<sup>+</sup> had little effect. A significant decrease of defects in the hybrid layer and a much decreased modulus gap between the hybrid layer and the adhesive layer greatly optimized the microstructure and micromechanical properties of the tooth-resin bonding interface, thus improving the effectiveness and durability of dentin bonding substantially. This study paves the way for a solution to the core scientific issue of contemporary adhesive dentistry: water residue and replacement in dentin bonding, both theoretically and practically.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345231161006\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345231161006","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Release of Interface Confined Water Significantly Improves Dentin Bonding.
Water residue and replacement difficulty cause insufficient adhesive infiltration in demineralized dentin matrix (DDM), which produces a defective hybrid layer and thus a bonding durability problem, severely plaguing adhesive dentistry for decades. In this study, we propose that the unique properties of a highly hydrated interface of the porous DDM can give rise to 1 new type of interface, confined liquid water, which accounts for most of the residue water and may be the main cause of insufficient infiltration. To prove our hypothesis, 3 metal ions with increasing binding affinity and complex stability (Na+, Ca2+, and Cu2+) were introduced respectively to coordinate negatively charged groups such as -PO43-, -COO- abundant in the DDM interface. Strong chelation of Ca2+ and Cu2+ rapidly released the confined water, significantly improving penetration of hydrophobic adhesive monomers, while Na+ had little effect. A significant decrease of defects in the hybrid layer and a much decreased modulus gap between the hybrid layer and the adhesive layer greatly optimized the microstructure and micromechanical properties of the tooth-resin bonding interface, thus improving the effectiveness and durability of dentin bonding substantially. This study paves the way for a solution to the core scientific issue of contemporary adhesive dentistry: water residue and replacement in dentin bonding, both theoretically and practically.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.