粉虫(tenbrio molitor)甲虫摄入尼龙11聚合物及随后粪便微生物群中单体代谢细菌的富集。

Amelia Leicht, Hisako Masuda
{"title":"粉虫(tenbrio molitor)甲虫摄入尼龙11聚合物及随后粪便微生物群中单体代谢细菌的富集。","authors":"Amelia Leicht,&nbsp;Hisako Masuda","doi":"10.31083/j.fbe1502011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nylon 11 is a synthetic plastic widely used in commercial products such as tubing for automobiles, offshore oilfields, and medical devices. An increasing amount of nylon and other plastic wastes have been released into various environments, posing ecological threats. The biodegradation of bundled nylon polymers has been considered impossible due to their crystalline structures.</p><p><strong>Methods: </strong>Nylon 11 film was created and incubated with adult mealworms. The mass, as well as structures, of nylon 11 films at pre- and post-incubation with beetles were compared. The number of nylon 11 monomer degrading bacteria in feces were determined by culture-dependent approach. The <i>t</i>-test was utilized to examine the statistical significance.</p><p><strong>Results: </strong>We discovered that adult mealworm (<i>Tenebrio molitor</i>) beetle can ingest nylon 11 when stretched thin. The microscopic observation of their feces did not identify the presence of large fragments of nylon 11. The analysis of fecal bacteria revealed that while the total number of culturable bacteria did not change significantly, the number of 11-aminoundecanoic acid-metabolizing bacteria increased by 10,000-fold.</p><p><strong>Conclusions: </strong>Our results suggest that bundled nylon 11 polymers were fragmented into smaller pieces, including monomeric units (11-aminoundecanoic acid) by adult mealworm. The monomers seem to have supported the proliferation of gut microbial communities capable of utilizing 11-aminoundecanoic acid as a carbon and nitrogen source. Our work implies the potential use of the mealworm beetle as a means to fragment nylon polymers for remediation applications.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ingestion of Nylon 11 Polymers by the Mealworm (<i>Tenebrio molitor</i>) Beetle and Subsequent Enrichment of Monomer-Metabolizing Bacteria in Fecal Microbiome.\",\"authors\":\"Amelia Leicht,&nbsp;Hisako Masuda\",\"doi\":\"10.31083/j.fbe1502011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nylon 11 is a synthetic plastic widely used in commercial products such as tubing for automobiles, offshore oilfields, and medical devices. An increasing amount of nylon and other plastic wastes have been released into various environments, posing ecological threats. The biodegradation of bundled nylon polymers has been considered impossible due to their crystalline structures.</p><p><strong>Methods: </strong>Nylon 11 film was created and incubated with adult mealworms. The mass, as well as structures, of nylon 11 films at pre- and post-incubation with beetles were compared. The number of nylon 11 monomer degrading bacteria in feces were determined by culture-dependent approach. The <i>t</i>-test was utilized to examine the statistical significance.</p><p><strong>Results: </strong>We discovered that adult mealworm (<i>Tenebrio molitor</i>) beetle can ingest nylon 11 when stretched thin. The microscopic observation of their feces did not identify the presence of large fragments of nylon 11. The analysis of fecal bacteria revealed that while the total number of culturable bacteria did not change significantly, the number of 11-aminoundecanoic acid-metabolizing bacteria increased by 10,000-fold.</p><p><strong>Conclusions: </strong>Our results suggest that bundled nylon 11 polymers were fragmented into smaller pieces, including monomeric units (11-aminoundecanoic acid) by adult mealworm. The monomers seem to have supported the proliferation of gut microbial communities capable of utilizing 11-aminoundecanoic acid as a carbon and nitrogen source. Our work implies the potential use of the mealworm beetle as a means to fragment nylon polymers for remediation applications.</p>\",\"PeriodicalId\":73068,\"journal\":{\"name\":\"Frontiers in bioscience (Elite edition)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience (Elite edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbe1502011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Elite edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbe1502011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:尼龙11是一种合成塑料,广泛应用于商业产品,如汽车管材,海上油田和医疗设备。越来越多的尼龙和其他塑料废物被排放到各种环境中,构成了生态威胁。捆扎尼龙聚合物的生物降解被认为是不可能的,因为他们的晶体结构。方法:制备尼龙11薄膜,与成虫孵育。比较了尼龙11薄膜在甲虫孵育前后的质量和结构。采用培养依赖法测定粪便中尼龙11单体降解菌的数量。采用t检验检验统计学显著性。结果:我们发现粉虫成虫在拉伸时可以摄取尼龙11。对它们粪便的显微镜观察并没有发现尼龙11的大块碎片。粪便细菌分析显示,虽然可培养细菌总数没有明显变化,但11-氨基癸酸代谢细菌的数量增加了1万倍。结论:我们的研究结果表明,捆绑的尼龙11聚合物被成虫粉碎成更小的碎片,包括单体单元(11-氨基癸酸)。这些单体似乎支持了能够利用11-氨基癸酸作为碳和氮源的肠道微生物群落的增殖。我们的工作暗示了粉虫甲虫作为尼龙聚合物碎片修复应用的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ingestion of Nylon 11 Polymers by the Mealworm (Tenebrio molitor) Beetle and Subsequent Enrichment of Monomer-Metabolizing Bacteria in Fecal Microbiome.

Background: Nylon 11 is a synthetic plastic widely used in commercial products such as tubing for automobiles, offshore oilfields, and medical devices. An increasing amount of nylon and other plastic wastes have been released into various environments, posing ecological threats. The biodegradation of bundled nylon polymers has been considered impossible due to their crystalline structures.

Methods: Nylon 11 film was created and incubated with adult mealworms. The mass, as well as structures, of nylon 11 films at pre- and post-incubation with beetles were compared. The number of nylon 11 monomer degrading bacteria in feces were determined by culture-dependent approach. The t-test was utilized to examine the statistical significance.

Results: We discovered that adult mealworm (Tenebrio molitor) beetle can ingest nylon 11 when stretched thin. The microscopic observation of their feces did not identify the presence of large fragments of nylon 11. The analysis of fecal bacteria revealed that while the total number of culturable bacteria did not change significantly, the number of 11-aminoundecanoic acid-metabolizing bacteria increased by 10,000-fold.

Conclusions: Our results suggest that bundled nylon 11 polymers were fragmented into smaller pieces, including monomeric units (11-aminoundecanoic acid) by adult mealworm. The monomers seem to have supported the proliferation of gut microbial communities capable of utilizing 11-aminoundecanoic acid as a carbon and nitrogen source. Our work implies the potential use of the mealworm beetle as a means to fragment nylon polymers for remediation applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quercetin, the Potential Powerful Flavonoid for Human and Food: A Review. Streptomyces as a Novel Biotool for Azo Pigments Remediation in Contaminated Scenarios. Biotechnological Advances Utilizing Aptamers and Peptides Refining PD-L1 Targeting. Obtaining Melanin-Synthesizing Strains of Bacillus thuringiensis and their Use for Biological Preparations. Implementation of a Macroporous Polyhydroxyethylmethacrylate Cryogel-Based Mini-Bioreactor System to Improve Monoclonal Antibody Production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1