{"title":"三维生物打印制备GelMA-MSCs支架修复兔软骨缺损的实验研究。","authors":"Zijie Pei, Mingyang Gao, Junhui Xing, Changbao Wang, Piqian Zhao, Hongtao Zhang, Jing Qu","doi":"10.18063/ijb.v9i2.662","DOIUrl":null,"url":null,"abstract":"<p><p>Cartilage damage is a common orthopedic disease, which can be caused by sports injury, obesity, joint wear, and aging, and cannot be repaired by itself. Surgical autologous osteochondral grafting is often required in deep osteochondral lesions to avoid the later progression of osteoarthritis. In this study, we fabricated a gelatin methacryloyl-marrow mesenchymal stem cells (GelMA-MSCs) scaffold by three-dimensional (3D) bioprinting. This bioink is capable of fast gel photocuring and spontaneous covalent cross-linking, which can maintain high viability of MSCs and provide a benign microenvironment to promote the interaction, migration, and proliferation of cells. <i>In vivo</i> experiments, further, proved that the 3D bioprinting scaffold can promote the regeneration of cartilage collagen fibers and have a remarkable effect on cartilage repair of rabbit cartilage injury model, which may represent a general and versatile strategy for precise engineering of cartilage regeneration system.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 2","pages":"662"},"PeriodicalIF":6.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/02/IJB-9-2-662.PMC10090535.pdf","citationCount":"2","resultStr":"{\"title\":\"Experimental study on repair of cartilage defects in the rabbits with GelMA-MSCs scaffold prepared by three-dimensional bioprinting.\",\"authors\":\"Zijie Pei, Mingyang Gao, Junhui Xing, Changbao Wang, Piqian Zhao, Hongtao Zhang, Jing Qu\",\"doi\":\"10.18063/ijb.v9i2.662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cartilage damage is a common orthopedic disease, which can be caused by sports injury, obesity, joint wear, and aging, and cannot be repaired by itself. Surgical autologous osteochondral grafting is often required in deep osteochondral lesions to avoid the later progression of osteoarthritis. In this study, we fabricated a gelatin methacryloyl-marrow mesenchymal stem cells (GelMA-MSCs) scaffold by three-dimensional (3D) bioprinting. This bioink is capable of fast gel photocuring and spontaneous covalent cross-linking, which can maintain high viability of MSCs and provide a benign microenvironment to promote the interaction, migration, and proliferation of cells. <i>In vivo</i> experiments, further, proved that the 3D bioprinting scaffold can promote the regeneration of cartilage collagen fibers and have a remarkable effect on cartilage repair of rabbit cartilage injury model, which may represent a general and versatile strategy for precise engineering of cartilage regeneration system.</p>\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":\"9 2\",\"pages\":\"662\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/02/IJB-9-2-662.PMC10090535.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18063/ijb.v9i2.662\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18063/ijb.v9i2.662","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Experimental study on repair of cartilage defects in the rabbits with GelMA-MSCs scaffold prepared by three-dimensional bioprinting.
Cartilage damage is a common orthopedic disease, which can be caused by sports injury, obesity, joint wear, and aging, and cannot be repaired by itself. Surgical autologous osteochondral grafting is often required in deep osteochondral lesions to avoid the later progression of osteoarthritis. In this study, we fabricated a gelatin methacryloyl-marrow mesenchymal stem cells (GelMA-MSCs) scaffold by three-dimensional (3D) bioprinting. This bioink is capable of fast gel photocuring and spontaneous covalent cross-linking, which can maintain high viability of MSCs and provide a benign microenvironment to promote the interaction, migration, and proliferation of cells. In vivo experiments, further, proved that the 3D bioprinting scaffold can promote the regeneration of cartilage collagen fibers and have a remarkable effect on cartilage repair of rabbit cartilage injury model, which may represent a general and versatile strategy for precise engineering of cartilage regeneration system.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.