第5.2章:口腔微生物生物膜。

Q2 Dentistry Monographs in Oral Science Pub Date : 2023-01-01 DOI:10.1159/000530558
Clarissa Cavalcanti Fatturi Parolo, Rodrigo Alex Arthur
{"title":"第5.2章:口腔微生物生物膜。","authors":"Clarissa Cavalcanti Fatturi Parolo,&nbsp;Rodrigo Alex Arthur","doi":"10.1159/000530558","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria, fungi, archaea, protozoa, viruses, and bacteriophages colonize the oral cavity and, in combination, they form the oral microbiome. The coexistence of different microorganisms and the microbial balance at each specific site are warranted by synergistic and antagonist interactions among members of the microbial communities. This microbiological balance suppresses the growth of potentially pathogenic microorganisms, generally keeping them at low abundance in the colonized sites. Microbial communities coexist in harmony with the host being compatible with a health condition. On the other hand, stressors exert selective pressure on the microbiota, promoting disruption in microbial homeostasis leading to dysbiosis. In this process, potentially pathogenic microorganisms become more abundant, resulting in microbial communities with altered properties and functions. Once the dysbiotic state has been reached, increased disease risk is expected. Biofilm is essential for caries development. The knowledge of the composition and metabolic interactions in the microbial community is fundamental for developing effective preventive and therapeutic measures. Studying both health and cariogenic conditions will bring an essential understanding of the disease process. Recent advances in omics approaches provide an unparalleled potential to reveal new insights about dental caries. This chapter will discuss a broader perspective on the etiology and pathogenesis of coronal dental caries from biofilm structure to microbial interactions.</p>","PeriodicalId":35771,"journal":{"name":"Monographs in Oral Science","volume":"31 ","pages":"62-77"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chapter 5.2: Oral Microbial Biofilms.\",\"authors\":\"Clarissa Cavalcanti Fatturi Parolo,&nbsp;Rodrigo Alex Arthur\",\"doi\":\"10.1159/000530558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria, fungi, archaea, protozoa, viruses, and bacteriophages colonize the oral cavity and, in combination, they form the oral microbiome. The coexistence of different microorganisms and the microbial balance at each specific site are warranted by synergistic and antagonist interactions among members of the microbial communities. This microbiological balance suppresses the growth of potentially pathogenic microorganisms, generally keeping them at low abundance in the colonized sites. Microbial communities coexist in harmony with the host being compatible with a health condition. On the other hand, stressors exert selective pressure on the microbiota, promoting disruption in microbial homeostasis leading to dysbiosis. In this process, potentially pathogenic microorganisms become more abundant, resulting in microbial communities with altered properties and functions. Once the dysbiotic state has been reached, increased disease risk is expected. Biofilm is essential for caries development. The knowledge of the composition and metabolic interactions in the microbial community is fundamental for developing effective preventive and therapeutic measures. Studying both health and cariogenic conditions will bring an essential understanding of the disease process. Recent advances in omics approaches provide an unparalleled potential to reveal new insights about dental caries. This chapter will discuss a broader perspective on the etiology and pathogenesis of coronal dental caries from biofilm structure to microbial interactions.</p>\",\"PeriodicalId\":35771,\"journal\":{\"name\":\"Monographs in Oral Science\",\"volume\":\"31 \",\"pages\":\"62-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monographs in Oral Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000530558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monographs in Oral Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000530558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 1

摘要

细菌、真菌、古生菌、原生动物、病毒和噬菌体在口腔中定植,它们结合在一起形成口腔微生物群。微生物群落成员之间的协同作用和拮抗作用保证了不同微生物的共存和每个特定位点的微生物平衡。这种微生物平衡抑制了潜在致病微生物的生长,通常使它们在定植位点保持低丰度。微生物群落与宿主和谐共存,与健康状况相适应。另一方面,应激源对微生物群施加选择性压力,促进微生物体内平衡的破坏,导致生态失调。在这个过程中,潜在的致病微生物变得更加丰富,导致微生物群落的性质和功能发生改变。一旦达到这种不良状态,疾病风险就会增加。生物膜对龋齿的形成至关重要。了解微生物群落的组成和代谢相互作用是制定有效的预防和治疗措施的基础。研究健康和龋齿条件将使人们对疾病过程有一个基本的了解。组学方法的最新进展为揭示龋齿的新见解提供了无与伦比的潜力。本章将从生物膜结构到微生物相互作用等方面对冠状牙龋的病因和发病机制进行更广泛的探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chapter 5.2: Oral Microbial Biofilms.

Bacteria, fungi, archaea, protozoa, viruses, and bacteriophages colonize the oral cavity and, in combination, they form the oral microbiome. The coexistence of different microorganisms and the microbial balance at each specific site are warranted by synergistic and antagonist interactions among members of the microbial communities. This microbiological balance suppresses the growth of potentially pathogenic microorganisms, generally keeping them at low abundance in the colonized sites. Microbial communities coexist in harmony with the host being compatible with a health condition. On the other hand, stressors exert selective pressure on the microbiota, promoting disruption in microbial homeostasis leading to dysbiosis. In this process, potentially pathogenic microorganisms become more abundant, resulting in microbial communities with altered properties and functions. Once the dysbiotic state has been reached, increased disease risk is expected. Biofilm is essential for caries development. The knowledge of the composition and metabolic interactions in the microbial community is fundamental for developing effective preventive and therapeutic measures. Studying both health and cariogenic conditions will bring an essential understanding of the disease process. Recent advances in omics approaches provide an unparalleled potential to reveal new insights about dental caries. This chapter will discuss a broader perspective on the etiology and pathogenesis of coronal dental caries from biofilm structure to microbial interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monographs in Oral Science
Monographs in Oral Science Medicine-Medicine (all)
CiteScore
3.70
自引率
0.00%
发文量
21
期刊介绍: For two decades, ‘Monographs in Oral Science’ has provided a source of in-depth discussion of selected topics in the sciences related to stomatology. Senior investigators are invited to present expanded contributions in their fields of special expertise. The topics chosen are those which have generated a long-standing interest, and on which new conceptual insights or innovative biotechnology are making considerable impact. Authors are selected on the basis of having made lasting contributions to their chosen field and their willingness to share their findings with others.
期刊最新文献
Chapter 8: Risk Assessment: Considerations for Coronal Caries. Chapter 9.4: Operative Treatment and Monitoring of Coronal Caries in Daily Practice. Chapter 9.3: Current Concepts of Caries Removal in Daily Practice. Chapter 9.1: The Use of Fluorides in the Control of Coronal Caries. Chapter 6: Diagnostic Considerations regarding Coronal Caries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1