精神分裂症患者运动知觉过程中多频带振荡活动。

IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Clinical EEG and Neuroscience Pub Date : 2023-07-01 DOI:10.1177/15500594221141825
C Başar-Eroğlu, K M Küçük, L Rürup, C Schmiedt-Fehr, B Mathes
{"title":"精神分裂症患者运动知觉过程中多频带振荡活动。","authors":"C Başar-Eroğlu,&nbsp;K M Küçük,&nbsp;L Rürup,&nbsp;C Schmiedt-Fehr,&nbsp;B Mathes","doi":"10.1177/15500594221141825","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with schizophrenia show impairment in binding stimulus features into coherent objects, which are reflected in disturbed oscillatory activities. This study aimed to identify disturbances in multiple oscillatory bands during perceptual organization of motion perception in patients with schizophrenia. EEG was recorded from healthy controls and patients with schizophrenia during continuous presentation of a motion stimulus which induces reversals between two exogenously generated perceptions. This stimulus was used to investigate differences in motion binding processes between healthy controls and patients with schizophrenia. EEG signals were transformed into frequency components by means of the Morlet wavelet transformation in order to analyse inter-trial coherences (ITC) in the delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and gamma (28-48 Hz) frequency bands during exogenous motion binding. Patients showed decreased delta-ITC in occipital and theta-ITC in central and parietal areas, while no significant differences were found for neither alpha nor gamma-ITCs. The present study provides one of the first insights on the oscillatory synchronizations related with the motion perception in schizophrenia. The ITC differences revealed alterations in the consistency of large-scale integration and transfer functions in patients with schizophrenia.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory Activities in Multiple Frequency Bands in Patients with Schizophrenia During Motion Perception.\",\"authors\":\"C Başar-Eroğlu,&nbsp;K M Küçük,&nbsp;L Rürup,&nbsp;C Schmiedt-Fehr,&nbsp;B Mathes\",\"doi\":\"10.1177/15500594221141825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with schizophrenia show impairment in binding stimulus features into coherent objects, which are reflected in disturbed oscillatory activities. This study aimed to identify disturbances in multiple oscillatory bands during perceptual organization of motion perception in patients with schizophrenia. EEG was recorded from healthy controls and patients with schizophrenia during continuous presentation of a motion stimulus which induces reversals between two exogenously generated perceptions. This stimulus was used to investigate differences in motion binding processes between healthy controls and patients with schizophrenia. EEG signals were transformed into frequency components by means of the Morlet wavelet transformation in order to analyse inter-trial coherences (ITC) in the delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and gamma (28-48 Hz) frequency bands during exogenous motion binding. Patients showed decreased delta-ITC in occipital and theta-ITC in central and parietal areas, while no significant differences were found for neither alpha nor gamma-ITCs. The present study provides one of the first insights on the oscillatory synchronizations related with the motion perception in schizophrenia. The ITC differences revealed alterations in the consistency of large-scale integration and transfer functions in patients with schizophrenia.</p>\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594221141825\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594221141825","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精神分裂症患者在将刺激特征与连贯的物体结合方面表现出障碍,这反映在振荡活动的干扰上。本研究旨在确定精神分裂症患者运动知觉知觉组织过程中多个振荡带的干扰。在连续呈现运动刺激时,记录健康对照和精神分裂症患者的脑电图,该运动刺激诱导两种外源性感知之间的逆转。这种刺激被用来研究健康对照者和精神分裂症患者之间运动结合过程的差异。利用Morlet小波变换将脑电信号转换成频率分量,分析外源运动绑定过程中delta (1 ~ 4hz)、theta (4 ~ 7hz)、alpha (8 ~ 12hz)和gamma (28 ~ 48hz)频段的试验间相干性(ITC)。患者枕区δ itc和中央区和顶叶区θ itc均下降,而α itc和γ itc均无显著差异。本研究首次揭示了与精神分裂症运动知觉相关的振荡同步现象。ITC差异揭示了精神分裂症患者大规模整合和传递功能一致性的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oscillatory Activities in Multiple Frequency Bands in Patients with Schizophrenia During Motion Perception.

Patients with schizophrenia show impairment in binding stimulus features into coherent objects, which are reflected in disturbed oscillatory activities. This study aimed to identify disturbances in multiple oscillatory bands during perceptual organization of motion perception in patients with schizophrenia. EEG was recorded from healthy controls and patients with schizophrenia during continuous presentation of a motion stimulus which induces reversals between two exogenously generated perceptions. This stimulus was used to investigate differences in motion binding processes between healthy controls and patients with schizophrenia. EEG signals were transformed into frequency components by means of the Morlet wavelet transformation in order to analyse inter-trial coherences (ITC) in the delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and gamma (28-48 Hz) frequency bands during exogenous motion binding. Patients showed decreased delta-ITC in occipital and theta-ITC in central and parietal areas, while no significant differences were found for neither alpha nor gamma-ITCs. The present study provides one of the first insights on the oscillatory synchronizations related with the motion perception in schizophrenia. The ITC differences revealed alterations in the consistency of large-scale integration and transfer functions in patients with schizophrenia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical EEG and Neuroscience
Clinical EEG and Neuroscience 医学-临床神经学
CiteScore
5.20
自引率
5.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.
期刊最新文献
Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy Deep Brain Stimulator (DBS) Artifact in the EEG of a Pediatric Patient. Classification of BCI Multiclass Motor Imagery Task Based on Artificial Neural Network. Transcranial Alternating Current Stimulation Alters Auditory Steady-State Oscillatory Rhythms and Their Cross-Frequency Couplings. Comparison of Spectral Analysis of Gamma Band Activity During Actual and Imagined Movements as a Cognitive Tool.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1