高通量单细胞颗粒分析新工具定量测定Nab3颗粒积累的可变外显率。

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY Current Genetics Pub Date : 2022-08-01 DOI:10.1007/s00294-022-01234-2
Jeremy C Hunn, Katherine M Hutchinson, Joshua B Kelley, Daniel Reines
{"title":"高通量单细胞颗粒分析新工具定量测定Nab3颗粒积累的可变外显率。","authors":"Jeremy C Hunn,&nbsp;Katherine M Hutchinson,&nbsp;Joshua B Kelley,&nbsp;Daniel Reines","doi":"10.1007/s00294-022-01234-2","DOIUrl":null,"url":null,"abstract":"<p><p>Reorganization of cellular proteins into subcellular compartments, such as the concentration of RNA-binding proteins into cytoplasmic stress granules and P-bodies, is a well-recognized, widely studied physiological process currently under intense investigation. One example of this is the induction of the yeast Nab3 transcription termination factor to rearrange from its pan-nucleoplasmic distribution to a granule at the nuclear periphery in response to nutrient limitation. Recent work in many cell types has shown that protein condensation in the nucleus is functionally important for transcription initiation, RNA processing, and termination. However, little is known about how subnuclear compartments form. Here, we have quantitatively analyzed this dynamic process in living yeast using a high-throughput computational tool and fluorescence microscopy. This analysis revealed that Nab3 granule accumulation varies in penetrance across yeast strains. A concentrated single granule is formed from at least a quarter of the nuclear Nab3 drawn from the rest of the nucleus. Levels of granule accumulation were inversely correlated with a growth defect in the absence of glucose. Importantly, the basis for some of the variation in penetrance was attributable to a defect in mitochondrial function. This publicly available computational tool provides a rigorous, reproducible, and unbiased examination of Nab3 granule accumulation that should be widely applicable to a variety of fluorescent images. Thousands of live cells can be readily examined enabling rigorous statistical verification of significance. With it, we describe a new feature of inducible subnuclear compartment formation for RNA-binding transcription factors and an important determinant of granule biogenesis.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283369/pdf/nihms-1815149.pdf","citationCount":"2","resultStr":"{\"title\":\"Variable penetrance of Nab3 granule accumulation quantified by a new tool for high-throughput single-cell granule analysis.\",\"authors\":\"Jeremy C Hunn,&nbsp;Katherine M Hutchinson,&nbsp;Joshua B Kelley,&nbsp;Daniel Reines\",\"doi\":\"10.1007/s00294-022-01234-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reorganization of cellular proteins into subcellular compartments, such as the concentration of RNA-binding proteins into cytoplasmic stress granules and P-bodies, is a well-recognized, widely studied physiological process currently under intense investigation. One example of this is the induction of the yeast Nab3 transcription termination factor to rearrange from its pan-nucleoplasmic distribution to a granule at the nuclear periphery in response to nutrient limitation. Recent work in many cell types has shown that protein condensation in the nucleus is functionally important for transcription initiation, RNA processing, and termination. However, little is known about how subnuclear compartments form. Here, we have quantitatively analyzed this dynamic process in living yeast using a high-throughput computational tool and fluorescence microscopy. This analysis revealed that Nab3 granule accumulation varies in penetrance across yeast strains. A concentrated single granule is formed from at least a quarter of the nuclear Nab3 drawn from the rest of the nucleus. Levels of granule accumulation were inversely correlated with a growth defect in the absence of glucose. Importantly, the basis for some of the variation in penetrance was attributable to a defect in mitochondrial function. This publicly available computational tool provides a rigorous, reproducible, and unbiased examination of Nab3 granule accumulation that should be widely applicable to a variety of fluorescent images. Thousands of live cells can be readily examined enabling rigorous statistical verification of significance. With it, we describe a new feature of inducible subnuclear compartment formation for RNA-binding transcription factors and an important determinant of granule biogenesis.</p>\",\"PeriodicalId\":10918,\"journal\":{\"name\":\"Current Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283369/pdf/nihms-1815149.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00294-022-01234-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00294-022-01234-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 2

摘要

细胞蛋白进入亚细胞区室的重组,如rna结合蛋白进入细胞质应激颗粒和p体的浓缩,是一个公认的、广泛研究的生理过程,目前正在深入研究中。这方面的一个例子是,由于营养限制,诱导酵母Nab3转录终止因子从其泛核质分布重新排列到核周围的颗粒。最近对许多细胞类型的研究表明,细胞核中的蛋白质凝聚对转录起始、RNA加工和终止具有重要的功能。然而,人们对亚核区室是如何形成的知之甚少。在这里,我们使用高通量计算工具和荧光显微镜定量分析了活酵母中的这一动态过程。这一分析表明,Nab3颗粒积累在不同酵母菌株间的外显率不同。浓缩的单个颗粒是由至少四分之一的原子核Nab3从原子核的其余部分提取出来形成的。在缺乏葡萄糖的情况下,颗粒积累水平与生长缺陷呈负相关。重要的是,外显率的一些变异的基础可归因于线粒体功能的缺陷。这个公开可用的计算工具提供了一个严格的、可重复的、无偏倚的Nab3颗粒积累检查,应该广泛适用于各种荧光图像。成千上万的活细胞可以很容易地被检查,从而对显著性进行严格的统计验证。利用它,我们描述了rna结合转录因子诱导亚核室形成的新特征和颗粒生物发生的重要决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable penetrance of Nab3 granule accumulation quantified by a new tool for high-throughput single-cell granule analysis.

Reorganization of cellular proteins into subcellular compartments, such as the concentration of RNA-binding proteins into cytoplasmic stress granules and P-bodies, is a well-recognized, widely studied physiological process currently under intense investigation. One example of this is the induction of the yeast Nab3 transcription termination factor to rearrange from its pan-nucleoplasmic distribution to a granule at the nuclear periphery in response to nutrient limitation. Recent work in many cell types has shown that protein condensation in the nucleus is functionally important for transcription initiation, RNA processing, and termination. However, little is known about how subnuclear compartments form. Here, we have quantitatively analyzed this dynamic process in living yeast using a high-throughput computational tool and fluorescence microscopy. This analysis revealed that Nab3 granule accumulation varies in penetrance across yeast strains. A concentrated single granule is formed from at least a quarter of the nuclear Nab3 drawn from the rest of the nucleus. Levels of granule accumulation were inversely correlated with a growth defect in the absence of glucose. Importantly, the basis for some of the variation in penetrance was attributable to a defect in mitochondrial function. This publicly available computational tool provides a rigorous, reproducible, and unbiased examination of Nab3 granule accumulation that should be widely applicable to a variety of fluorescent images. Thousands of live cells can be readily examined enabling rigorous statistical verification of significance. With it, we describe a new feature of inducible subnuclear compartment formation for RNA-binding transcription factors and an important determinant of granule biogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Genetics
Current Genetics 生物-遗传学
CiteScore
6.00
自引率
0.00%
发文量
34
审稿时长
1 months
期刊介绍: Current Genetics publishes genetic, genomic, molecular and systems-level analysis of eukaryotic and prokaryotic microorganisms and cell organelles. All articles are peer-reviewed. The journal welcomes submissions employing any type of research approach, be it analytical (aiming at a better understanding), applied (aiming at practical applications), synthetic or theoretical. Current Genetics no longer accepts manuscripts describing the genome sequence of mitochondria/chloroplast of a small number of species. Manuscripts covering sequence comparisons and analyses that include a large number of species will still be considered.
期刊最新文献
Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta Structure and distribution of sensor histidine kinases in the fungal kingdom Transcriptional activation domains interact with ATPase subunits of yeast chromatin remodelling complexes SWI/SNF, RSC and INO80. Deletions of ttrA and pduA genes in Salmonella enterica affect survival within chicken-derived HD-11 macrophages. Insights into the whole genome sequence of Bacillus thuringiensis NBAIR BtPl, a strain toxic to the melon fruit fly, Zeugodacus cucurbitae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1