TransMHCII:利用蛋白质语言模型和图像分类器建立的新型 MHC-II 结合预测模型。

Q2 Medicine Antibody Therapeutics Pub Date : 2023-05-14 eCollection Date: 2023-04-01 DOI:10.1093/abt/tbad011
Xin Yu, Christopher Negron, Lili Huang, Geertruida Veldman
{"title":"TransMHCII:利用蛋白质语言模型和图像分类器建立的新型 MHC-II 结合预测模型。","authors":"Xin Yu, Christopher Negron, Lili Huang, Geertruida Veldman","doi":"10.1093/abt/tbad011","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of deep learning models such as AlphaFold2 has revolutionized the structure prediction of proteins. Nevertheless, much remains unexplored, especially on how we utilize structure models to predict biological properties. Herein, we present a method using features extracted from protein language models (PLMs) to predict the major histocompatibility complex class II (MHC-II) binding affinity of peptides. Specifically, we evaluated a novel transfer learning approach where the backbone of our model was interchanged with architectures designed for image classification tasks. Features extracted from several PLMs (ESM1b, ProtXLNet or ProtT5-XL-UniRef) were passed into image models (EfficientNet v2b0, EfficientNet v2m or ViT-16). The optimal pairing of the PLM and image classifier resulted in the final model TransMHCII, outperforming NetMHCIIpan 3.2 and NetMHCIIpan 4.0-BA on the receiver operating characteristic area under the curve, balanced accuracy and Jaccard scores. The architecture innovation may facilitate the development of other deep learning models for biological problems.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278228/pdf/","citationCount":"0","resultStr":"{\"title\":\"TransMHCII: a novel MHC-II binding prediction model built using a protein language model and an image classifier.\",\"authors\":\"Xin Yu, Christopher Negron, Lili Huang, Geertruida Veldman\",\"doi\":\"10.1093/abt/tbad011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of deep learning models such as AlphaFold2 has revolutionized the structure prediction of proteins. Nevertheless, much remains unexplored, especially on how we utilize structure models to predict biological properties. Herein, we present a method using features extracted from protein language models (PLMs) to predict the major histocompatibility complex class II (MHC-II) binding affinity of peptides. Specifically, we evaluated a novel transfer learning approach where the backbone of our model was interchanged with architectures designed for image classification tasks. Features extracted from several PLMs (ESM1b, ProtXLNet or ProtT5-XL-UniRef) were passed into image models (EfficientNet v2b0, EfficientNet v2m or ViT-16). The optimal pairing of the PLM and image classifier resulted in the final model TransMHCII, outperforming NetMHCIIpan 3.2 and NetMHCIIpan 4.0-BA on the receiver operating characteristic area under the curve, balanced accuracy and Jaccard scores. The architecture innovation may facilitate the development of other deep learning models for biological problems.</p>\",\"PeriodicalId\":36655,\"journal\":{\"name\":\"Antibody Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibody Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/abt/tbad011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbad011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

AlphaFold2 等深度学习模型的出现彻底改变了蛋白质的结构预测。尽管如此,仍有许多问题有待探索,尤其是如何利用结构模型预测生物特性。在本文中,我们介绍了一种利用从蛋白质语言模型(PLM)中提取的特征来预测肽的主要组织相容性复合体 II 类(MHC-II)结合亲和力的方法。具体来说,我们评估了一种新颖的迁移学习方法,在这种方法中,我们模型的主干与为图像分类任务设计的架构进行了互换。从多个 PLM(ESM1b、ProtXLNet 或 ProtT5-XL-UniRef)中提取的特征被传递到图像模型(EfficientNet v2b0、EfficientNet v2m 或 ViT-16)中。PLM 和图像分类器的最佳配对产生了最终的 TransMHCII 模型,该模型在接收器工作特征曲线下面积、平衡准确度和 Jaccard 分数方面优于 NetMHCIIpan 3.2 和 NetMHCIIpan 4.0-BA。这一架构创新可能会促进针对生物问题的其他深度学习模型的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TransMHCII: a novel MHC-II binding prediction model built using a protein language model and an image classifier.

The emergence of deep learning models such as AlphaFold2 has revolutionized the structure prediction of proteins. Nevertheless, much remains unexplored, especially on how we utilize structure models to predict biological properties. Herein, we present a method using features extracted from protein language models (PLMs) to predict the major histocompatibility complex class II (MHC-II) binding affinity of peptides. Specifically, we evaluated a novel transfer learning approach where the backbone of our model was interchanged with architectures designed for image classification tasks. Features extracted from several PLMs (ESM1b, ProtXLNet or ProtT5-XL-UniRef) were passed into image models (EfficientNet v2b0, EfficientNet v2m or ViT-16). The optimal pairing of the PLM and image classifier resulted in the final model TransMHCII, outperforming NetMHCIIpan 3.2 and NetMHCIIpan 4.0-BA on the receiver operating characteristic area under the curve, balanced accuracy and Jaccard scores. The architecture innovation may facilitate the development of other deep learning models for biological problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antibody Therapeutics
Antibody Therapeutics Medicine-Immunology and Allergy
CiteScore
8.70
自引率
0.00%
发文量
30
审稿时长
8 weeks
期刊最新文献
AI-based antibody discovery platform identifies novel, diverse, and pharmacologically active therapeutic antibodies against multiple SARS-CoV-2 strains. FcRider: a recombinant Fc nanoparticle with endogenous adjuvant activities for hybrid immunization. A pan-allelic human SIRPα-blocking antibody, ES004-B5, promotes tumor killing by enhancing macrophage phagocytosis and subsequently inducing an effective T-cell response. Correction to: A case study of a bispecific antibody manufacturability assessment and optimization during discovery stage and its implications. The process using a synthetic library that generates multiple diverse human single domain antibodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1