癌症染色体外DNA。

IF 7.7 2区 生物学 Q1 GENETICS & HEREDITY Annual review of genomics and human genetics Pub Date : 2022-08-31 Epub Date: 2022-05-24 DOI:10.1146/annurev-genom-120821-100535
Vineet Bafna, Paul S Mischel
{"title":"癌症染色体外DNA。","authors":"Vineet Bafna,&nbsp;Paul S Mischel","doi":"10.1146/annurev-genom-120821-100535","DOIUrl":null,"url":null,"abstract":"<p><p>In cancer, complex genome rearrangements and other structural alterations, including the amplification of oncogenes on circular extrachromosomal DNA (ecDNA) elements, drive the formation and progression of tumors. ecDNA is a particularly challenging structural alteration. By untethering oncogenes from chromosomal constraints, it elevates oncogene copy number, drives intratumoral genetic heterogeneity, promotes rapid tumor evolution, and results in treatment resistance. The profound changes in DNA shape and nuclear architecture generated by ecDNA alter the transcriptional landscape of tumors by catalyzing new types of regulatory interactions that do not occur on chromosomes. The current suite of tools for interrogating cancer genomes is well suited for deciphering sequence but has limited ability to resolve the complex changes in DNA structure and dynamics that ecDNA generates. Here, we review the challenges of resolving ecDNA form and function and discuss the emerging tool kit for deciphering ecDNA architecture and spatial organization, including what has been learned to date about how this dramatic change in shape alters tumor development, progression, and drug resistance.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":"23 ","pages":"29-52"},"PeriodicalIF":7.7000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508221/pdf/nihms-1907774.pdf","citationCount":"10","resultStr":"{\"title\":\"Extrachromosomal DNA in Cancer.\",\"authors\":\"Vineet Bafna,&nbsp;Paul S Mischel\",\"doi\":\"10.1146/annurev-genom-120821-100535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cancer, complex genome rearrangements and other structural alterations, including the amplification of oncogenes on circular extrachromosomal DNA (ecDNA) elements, drive the formation and progression of tumors. ecDNA is a particularly challenging structural alteration. By untethering oncogenes from chromosomal constraints, it elevates oncogene copy number, drives intratumoral genetic heterogeneity, promotes rapid tumor evolution, and results in treatment resistance. The profound changes in DNA shape and nuclear architecture generated by ecDNA alter the transcriptional landscape of tumors by catalyzing new types of regulatory interactions that do not occur on chromosomes. The current suite of tools for interrogating cancer genomes is well suited for deciphering sequence but has limited ability to resolve the complex changes in DNA structure and dynamics that ecDNA generates. Here, we review the challenges of resolving ecDNA form and function and discuss the emerging tool kit for deciphering ecDNA architecture and spatial organization, including what has been learned to date about how this dramatic change in shape alters tumor development, progression, and drug resistance.</p>\",\"PeriodicalId\":8231,\"journal\":{\"name\":\"Annual review of genomics and human genetics\",\"volume\":\"23 \",\"pages\":\"29-52\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508221/pdf/nihms-1907774.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genomics and human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genom-120821-100535\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-120821-100535","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 10

摘要

在癌症中,复杂的基因组重排和其他结构改变,包括环状染色体外DNA(ecDNA)元件上致癌基因的扩增,驱动肿瘤的形成和发展。ecDNA是一种特别具有挑战性的结构改变。通过将癌基因从染色体限制中分离出来,它提高了癌基因拷贝数,驱动了肿瘤内的遗传异质性,促进了肿瘤的快速进化,并导致了治疗耐药性。ecDNA产生的DNA形状和核结构的深刻变化通过催化染色体上没有发生的新型调控相互作用,改变了肿瘤的转录格局。目前用于询问癌症基因组的一套工具非常适合于破译序列,但解决ecDNA产生的DNA结构和动力学的复杂变化的能力有限。在这里,我们回顾了解决ecDNA形式和功能的挑战,并讨论了新出现的破译ecDNA结构和空间组织的工具包,包括迄今为止对这种形状的巨大变化如何改变肿瘤的发展、进展和耐药性的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extrachromosomal DNA in Cancer.

In cancer, complex genome rearrangements and other structural alterations, including the amplification of oncogenes on circular extrachromosomal DNA (ecDNA) elements, drive the formation and progression of tumors. ecDNA is a particularly challenging structural alteration. By untethering oncogenes from chromosomal constraints, it elevates oncogene copy number, drives intratumoral genetic heterogeneity, promotes rapid tumor evolution, and results in treatment resistance. The profound changes in DNA shape and nuclear architecture generated by ecDNA alter the transcriptional landscape of tumors by catalyzing new types of regulatory interactions that do not occur on chromosomes. The current suite of tools for interrogating cancer genomes is well suited for deciphering sequence but has limited ability to resolve the complex changes in DNA structure and dynamics that ecDNA generates. Here, we review the challenges of resolving ecDNA form and function and discuss the emerging tool kit for deciphering ecDNA architecture and spatial organization, including what has been learned to date about how this dramatic change in shape alters tumor development, progression, and drug resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.90
自引率
1.10%
发文量
29
期刊介绍: Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.
期刊最新文献
PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. RNA Sequencing in Disease Diagnosis. The Myriad Decision at 10. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Toward Realizing the Promise of AI in Precision Health Across the Spectrum of Care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1