{"title":"透明细胞肾细胞癌患者的免疫治疗和免疫浸润:综合分析。","authors":"Lin Hou, Xinyue Liu","doi":"10.1155/2023/3898610","DOIUrl":null,"url":null,"abstract":"<p><p>On a global scale, renal cell carcinoma (RCC) is the second most common form of cancer and the 10th leading cause of cancer-related deaths. There are about 70% of cases of RCC that are clear cell renal cell carcinomas (ccRCCs). This study explores possible targets for immune therapy in patients with RCC. In the recent years, immunotherapy has been applied to RCC patients. In order to identify genes that are closely associated with immune cells, a weighted gene coexpression network analysis (WGCNA) was conducted. A close association was found between genes involved in MEred and M0 macrophages, M1 macrophages, and M2 macrophages. A prognostic prediction model is subsequently developed by incorporating the OS and the expression level of key genes from the RCC cohort into a univariate COX regression analysis, a multivariate COX regression analysis, and a combined COX regression analysis. We finally discovered that 6 genes are closely associated with the prognosis of RCC patients, including SLC16A12, SLC2A9, IGF2BP2, EMX2, ANK3, and METTL7A. The survival analysis proved the prognostic prediction value of the model. The 1-year, 3-year, and 5-year AUC of ROC curves are 0.759, 0.723, and 0.733, respectively. For clinical ROC curves, the AUC score for risk score, stage, grade, and <i>T</i> stage is 0.759, 0.824, 0722, and 0.736, respectively. The nomogram was constructed for better prognosis prediction of RCC patients. In addition, GSVA and GO enrichment analysis was performed to explore the potential pathways that are closely associated with genes involved in the prognostic prediction model. Accordingly, our study demonstrates that immune cells play a crucial role in RCC infiltration. The development of a prognostic prediction model is a potential new prognostic biomarker and potential immunotherapy target for tumors.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2023 ","pages":"3898610"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101751/pdf/","citationCount":"0","resultStr":"{\"title\":\"Immunotherapy and Immune Infiltration in Patients with Clear Cell Renal Cell Carcinoma: A Comprehensive Analysis.\",\"authors\":\"Lin Hou, Xinyue Liu\",\"doi\":\"10.1155/2023/3898610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On a global scale, renal cell carcinoma (RCC) is the second most common form of cancer and the 10th leading cause of cancer-related deaths. There are about 70% of cases of RCC that are clear cell renal cell carcinomas (ccRCCs). This study explores possible targets for immune therapy in patients with RCC. In the recent years, immunotherapy has been applied to RCC patients. In order to identify genes that are closely associated with immune cells, a weighted gene coexpression network analysis (WGCNA) was conducted. A close association was found between genes involved in MEred and M0 macrophages, M1 macrophages, and M2 macrophages. A prognostic prediction model is subsequently developed by incorporating the OS and the expression level of key genes from the RCC cohort into a univariate COX regression analysis, a multivariate COX regression analysis, and a combined COX regression analysis. We finally discovered that 6 genes are closely associated with the prognosis of RCC patients, including SLC16A12, SLC2A9, IGF2BP2, EMX2, ANK3, and METTL7A. The survival analysis proved the prognostic prediction value of the model. The 1-year, 3-year, and 5-year AUC of ROC curves are 0.759, 0.723, and 0.733, respectively. For clinical ROC curves, the AUC score for risk score, stage, grade, and <i>T</i> stage is 0.759, 0.824, 0722, and 0.736, respectively. The nomogram was constructed for better prognosis prediction of RCC patients. In addition, GSVA and GO enrichment analysis was performed to explore the potential pathways that are closely associated with genes involved in the prognostic prediction model. Accordingly, our study demonstrates that immune cells play a crucial role in RCC infiltration. The development of a prognostic prediction model is a potential new prognostic biomarker and potential immunotherapy target for tumors.</p>\",\"PeriodicalId\":12778,\"journal\":{\"name\":\"Genetics research\",\"volume\":\"2023 \",\"pages\":\"3898610\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3898610\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/3898610","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Immunotherapy and Immune Infiltration in Patients with Clear Cell Renal Cell Carcinoma: A Comprehensive Analysis.
On a global scale, renal cell carcinoma (RCC) is the second most common form of cancer and the 10th leading cause of cancer-related deaths. There are about 70% of cases of RCC that are clear cell renal cell carcinomas (ccRCCs). This study explores possible targets for immune therapy in patients with RCC. In the recent years, immunotherapy has been applied to RCC patients. In order to identify genes that are closely associated with immune cells, a weighted gene coexpression network analysis (WGCNA) was conducted. A close association was found between genes involved in MEred and M0 macrophages, M1 macrophages, and M2 macrophages. A prognostic prediction model is subsequently developed by incorporating the OS and the expression level of key genes from the RCC cohort into a univariate COX regression analysis, a multivariate COX regression analysis, and a combined COX regression analysis. We finally discovered that 6 genes are closely associated with the prognosis of RCC patients, including SLC16A12, SLC2A9, IGF2BP2, EMX2, ANK3, and METTL7A. The survival analysis proved the prognostic prediction value of the model. The 1-year, 3-year, and 5-year AUC of ROC curves are 0.759, 0.723, and 0.733, respectively. For clinical ROC curves, the AUC score for risk score, stage, grade, and T stage is 0.759, 0.824, 0722, and 0.736, respectively. The nomogram was constructed for better prognosis prediction of RCC patients. In addition, GSVA and GO enrichment analysis was performed to explore the potential pathways that are closely associated with genes involved in the prognostic prediction model. Accordingly, our study demonstrates that immune cells play a crucial role in RCC infiltration. The development of a prognostic prediction model is a potential new prognostic biomarker and potential immunotherapy target for tumors.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.