Ehsan Koushki, Ali Asghar Mowlavi, Seyed Taha Hoseini
{"title":"共轭金纳米粒子的局域表面等离子体共振在严重急性呼吸系统综合征冠状病毒2型光谱诊断中的应用:数值研究。","authors":"Ehsan Koushki, Ali Asghar Mowlavi, Seyed Taha Hoseini","doi":"10.1007/s11468-023-01901-1","DOIUrl":null,"url":null,"abstract":"<div><p>Severe respiratory syndrome COVID-19 (SARS-CoV-2) outbreak has became the most important global health issue, and simultaneous efforts to fast and low-cost diagnosis of this virus were performed by researchers. One of the most usual tests was colorimetric methods based on the change of color of gold nanoparticles in the presence of viral antibodies, antigens, and other biological agents. This spectral change can be due to the aggregation of the particles or the shift of localized surface plasmon resonance due to the electrical interactions of surface agents. It is known that surface agents could easily shift the absorption peak of metallic nanocolloids which is attributed to the localized surface plasmon resonance. Experimental diagnosis assays for colorimetric detection of SARS-CoV-2 using Au NPs were reviewed, and the shift of absorption peak was studied from the viewpoint of numerical analysis. Using the numerical method, the refractive index and real and imaginary parts of the effective relative permittivity of the viral biological shell around Au NPs were obtained. This model gives a quantitative description of colorimetric assays of the detection of SARS-CoV-2 using Au NPs.\n</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"18 5","pages":"1847 - 1855"},"PeriodicalIF":3.3000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11468-023-01901-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of Localized Surface Plasmon Resonance of Conjugated Gold Nanoparticles in Spectral Diagnosis of SARS-CoV-2: A Numerical Study\",\"authors\":\"Ehsan Koushki, Ali Asghar Mowlavi, Seyed Taha Hoseini\",\"doi\":\"10.1007/s11468-023-01901-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Severe respiratory syndrome COVID-19 (SARS-CoV-2) outbreak has became the most important global health issue, and simultaneous efforts to fast and low-cost diagnosis of this virus were performed by researchers. One of the most usual tests was colorimetric methods based on the change of color of gold nanoparticles in the presence of viral antibodies, antigens, and other biological agents. This spectral change can be due to the aggregation of the particles or the shift of localized surface plasmon resonance due to the electrical interactions of surface agents. It is known that surface agents could easily shift the absorption peak of metallic nanocolloids which is attributed to the localized surface plasmon resonance. Experimental diagnosis assays for colorimetric detection of SARS-CoV-2 using Au NPs were reviewed, and the shift of absorption peak was studied from the viewpoint of numerical analysis. Using the numerical method, the refractive index and real and imaginary parts of the effective relative permittivity of the viral biological shell around Au NPs were obtained. This model gives a quantitative description of colorimetric assays of the detection of SARS-CoV-2 using Au NPs.\\n</p></div>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"18 5\",\"pages\":\"1847 - 1855\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11468-023-01901-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11468-023-01901-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-01901-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Application of Localized Surface Plasmon Resonance of Conjugated Gold Nanoparticles in Spectral Diagnosis of SARS-CoV-2: A Numerical Study
Severe respiratory syndrome COVID-19 (SARS-CoV-2) outbreak has became the most important global health issue, and simultaneous efforts to fast and low-cost diagnosis of this virus were performed by researchers. One of the most usual tests was colorimetric methods based on the change of color of gold nanoparticles in the presence of viral antibodies, antigens, and other biological agents. This spectral change can be due to the aggregation of the particles or the shift of localized surface plasmon resonance due to the electrical interactions of surface agents. It is known that surface agents could easily shift the absorption peak of metallic nanocolloids which is attributed to the localized surface plasmon resonance. Experimental diagnosis assays for colorimetric detection of SARS-CoV-2 using Au NPs were reviewed, and the shift of absorption peak was studied from the viewpoint of numerical analysis. Using the numerical method, the refractive index and real and imaginary parts of the effective relative permittivity of the viral biological shell around Au NPs were obtained. This model gives a quantitative description of colorimetric assays of the detection of SARS-CoV-2 using Au NPs.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.