Philippe Delbreil, Xavier Banquy and Davide Brambilla*,
{"title":"基于模板的多孔水凝胶微颗粒作为治疗性蛋白的载体","authors":"Philippe Delbreil, Xavier Banquy and Davide Brambilla*, ","doi":"10.1021/acsbiomedchemau.3c00001","DOIUrl":null,"url":null,"abstract":"<p >Hydrogels have been extensively researched for over 60 years for their limitless applications in biomedical research. In this study, porous hydrogel microparticles (PHMPs) made of poly(ethylene glycol) diacrylamide were investigated for their potential as a delivery platform for therapeutic proteins. These particles are made using hard calcium carbonate (CaCO<sub>3</sub>) templates, which can easily be dissolved under acidic conditions. After optimization of the synthesis processes, both CaCO<sub>3</sub> templates and PHMPs were characterized using a wide range of techniques. Then, using an array of proteins with different physicochemical properties, the encapsulation efficiency of proteins in PHMPs was evaluated under different conditions. Strategies to enhance protein encapsulation via modulation of particle surface charge to increase electrostatic interactions and conjugation using EDC/NHS chemistry were also investigated. Conjugation of bovine serum albumin to PHMPs showed increased encapsulation and diminished release over time, highlighting the potential of PHMPs as a versatile delivery platform for therapeutic proteins such as enzymes or antibodies.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"3 3","pages":"252–260"},"PeriodicalIF":3.8000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/19/db/bg3c00001.PMC10288498.pdf","citationCount":"2","resultStr":"{\"title\":\"Template-Based Porous Hydrogel Microparticles as Carriers for Therapeutic Proteins\",\"authors\":\"Philippe Delbreil, Xavier Banquy and Davide Brambilla*, \",\"doi\":\"10.1021/acsbiomedchemau.3c00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogels have been extensively researched for over 60 years for their limitless applications in biomedical research. In this study, porous hydrogel microparticles (PHMPs) made of poly(ethylene glycol) diacrylamide were investigated for their potential as a delivery platform for therapeutic proteins. These particles are made using hard calcium carbonate (CaCO<sub>3</sub>) templates, which can easily be dissolved under acidic conditions. After optimization of the synthesis processes, both CaCO<sub>3</sub> templates and PHMPs were characterized using a wide range of techniques. Then, using an array of proteins with different physicochemical properties, the encapsulation efficiency of proteins in PHMPs was evaluated under different conditions. Strategies to enhance protein encapsulation via modulation of particle surface charge to increase electrostatic interactions and conjugation using EDC/NHS chemistry were also investigated. Conjugation of bovine serum albumin to PHMPs showed increased encapsulation and diminished release over time, highlighting the potential of PHMPs as a versatile delivery platform for therapeutic proteins such as enzymes or antibodies.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"3 3\",\"pages\":\"252–260\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/19/db/bg3c00001.PMC10288498.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.3c00001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.3c00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Template-Based Porous Hydrogel Microparticles as Carriers for Therapeutic Proteins
Hydrogels have been extensively researched for over 60 years for their limitless applications in biomedical research. In this study, porous hydrogel microparticles (PHMPs) made of poly(ethylene glycol) diacrylamide were investigated for their potential as a delivery platform for therapeutic proteins. These particles are made using hard calcium carbonate (CaCO3) templates, which can easily be dissolved under acidic conditions. After optimization of the synthesis processes, both CaCO3 templates and PHMPs were characterized using a wide range of techniques. Then, using an array of proteins with different physicochemical properties, the encapsulation efficiency of proteins in PHMPs was evaluated under different conditions. Strategies to enhance protein encapsulation via modulation of particle surface charge to increase electrostatic interactions and conjugation using EDC/NHS chemistry were also investigated. Conjugation of bovine serum albumin to PHMPs showed increased encapsulation and diminished release over time, highlighting the potential of PHMPs as a versatile delivery platform for therapeutic proteins such as enzymes or antibodies.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.