{"title":"利用遮蔽式自动编码器从序列 SEM 图像中学习大脑结构的异质表示。","authors":"Ao Cheng, Jiahao Shi, Lirong Wang, Ruobing Zhang","doi":"10.3389/fninf.2023.1118419","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The exorbitant cost of accurately annotating the large-scale serial scanning electron microscope (SEM) images as the ground truth for training has always been a great challenge for brain map reconstruction by deep learning methods in neural connectome studies. The representation ability of the model is strongly correlated with the number of such high-quality labels. Recently, the masked autoencoder (MAE) has been shown to effectively pre-train Vision Transformers (ViT) to improve their representational capabilities.</p><p><strong>Methods: </strong>In this paper, we investigated a self-pre-training paradigm for serial SEM images with MAE to implement downstream segmentation tasks. We randomly masked voxels in three-dimensional brain image patches and trained an autoencoder to reconstruct the neuronal structures.</p><p><strong>Results and discussion: </strong>We tested different pre-training and fine-tuning configurations on three different serial SEM datasets of mouse brains, including two public ones, SNEMI3D and MitoEM-R, and one acquired in our lab. A series of masking ratios were examined and the optimal ratio for pre-training efficiency was spotted for 3D segmentation. The MAE pre-training strategy significantly outperformed the supervised learning from scratch. Our work shows that the general framework of can be a unified approach for effective learning of the representation of heterogeneous neural structural features in serial SEM images to greatly facilitate brain connectome reconstruction.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"17 ","pages":"1118419"},"PeriodicalIF":4.6000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285402/pdf/","citationCount":"1","resultStr":"{\"title\":\"Learning the heterogeneous representation of brain's structure from serial SEM images using a masked autoencoder.\",\"authors\":\"Ao Cheng, Jiahao Shi, Lirong Wang, Ruobing Zhang\",\"doi\":\"10.3389/fninf.2023.1118419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The exorbitant cost of accurately annotating the large-scale serial scanning electron microscope (SEM) images as the ground truth for training has always been a great challenge for brain map reconstruction by deep learning methods in neural connectome studies. The representation ability of the model is strongly correlated with the number of such high-quality labels. Recently, the masked autoencoder (MAE) has been shown to effectively pre-train Vision Transformers (ViT) to improve their representational capabilities.</p><p><strong>Methods: </strong>In this paper, we investigated a self-pre-training paradigm for serial SEM images with MAE to implement downstream segmentation tasks. We randomly masked voxels in three-dimensional brain image patches and trained an autoencoder to reconstruct the neuronal structures.</p><p><strong>Results and discussion: </strong>We tested different pre-training and fine-tuning configurations on three different serial SEM datasets of mouse brains, including two public ones, SNEMI3D and MitoEM-R, and one acquired in our lab. A series of masking ratios were examined and the optimal ratio for pre-training efficiency was spotted for 3D segmentation. The MAE pre-training strategy significantly outperformed the supervised learning from scratch. Our work shows that the general framework of can be a unified approach for effective learning of the representation of heterogeneous neural structural features in serial SEM images to greatly facilitate brain connectome reconstruction.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"17 \",\"pages\":\"1118419\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285402/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2023.1118419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2023.1118419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
摘要
前言在神经连接组研究中,将大规模序列扫描电子显微镜(SEM)图像准确标注为训练的基本真相(ground truth)成本高昂,一直是深度学习方法重建脑图的巨大挑战。模型的表示能力与此类高质量标签的数量密切相关。最近的研究表明,遮蔽式自动编码器(MAE)可以有效地对视觉转换器(ViT)进行预训练,从而提高其表征能力:本文研究了利用 MAE 对序列 SEM 图像进行自我预训练的范例,以执行下游分割任务。我们随机屏蔽了三维脑图像斑块中的体素,并训练了一个自动编码器来重建神经元结构:我们在三个不同的小鼠大脑序列 SEM 数据集上测试了不同的预训练和微调配置,其中包括两个公开数据集 SNEMI3D 和 MitoEM-R,以及一个我们实验室获得的数据集。对一系列掩蔽比率进行了研究,发现了三维分割预训练效率的最佳比率。MAE 预训练策略明显优于从头开始的监督学习。我们的工作表明,MAE 的一般框架可以作为一种统一的方法,用于有效学习序列 SEM 图像中异质神经结构特征的表示,从而极大地促进大脑连接组的重建。
Learning the heterogeneous representation of brain's structure from serial SEM images using a masked autoencoder.
Introduction: The exorbitant cost of accurately annotating the large-scale serial scanning electron microscope (SEM) images as the ground truth for training has always been a great challenge for brain map reconstruction by deep learning methods in neural connectome studies. The representation ability of the model is strongly correlated with the number of such high-quality labels. Recently, the masked autoencoder (MAE) has been shown to effectively pre-train Vision Transformers (ViT) to improve their representational capabilities.
Methods: In this paper, we investigated a self-pre-training paradigm for serial SEM images with MAE to implement downstream segmentation tasks. We randomly masked voxels in three-dimensional brain image patches and trained an autoencoder to reconstruct the neuronal structures.
Results and discussion: We tested different pre-training and fine-tuning configurations on three different serial SEM datasets of mouse brains, including two public ones, SNEMI3D and MitoEM-R, and one acquired in our lab. A series of masking ratios were examined and the optimal ratio for pre-training efficiency was spotted for 3D segmentation. The MAE pre-training strategy significantly outperformed the supervised learning from scratch. Our work shows that the general framework of can be a unified approach for effective learning of the representation of heterogeneous neural structural features in serial SEM images to greatly facilitate brain connectome reconstruction.