{"title":"CovSumm:一个用于CORD-19的无监督变换器和基于图的混合文档摘要模型。","authors":"Akanksha Karotia, Seba Susan","doi":"10.1007/s11227-023-05291-3","DOIUrl":null,"url":null,"abstract":"<p><p>The number of research articles published on COVID-19 has dramatically increased since the outbreak of the pandemic in November 2019. This absurd rate of productivity in research articles leads to information overload. It has increasingly become urgent for researchers and medical associations to stay up to date on the latest COVID-19 studies. To address information overload in COVID-19 scientific literature, the study presents a novel hybrid model named CovSumm, an unsupervised graph-based hybrid approach for single-document summarization, that is evaluated on the CORD-19 dataset. We have tested the proposed methodology on the scientific papers in the database dated from January 1, 2021 to December 31, 2021, consisting of 840 documents in total. The proposed text summarization is a hybrid of two distinctive extractive approaches (1) GenCompareSum (transformer-based approach) and (2) TextRank (graph-based approach). The sum of scores generated by both methods is used to rank the sentences for generating the summary. On the CORD-19, the recall-oriented understudy for gisting evaluation (ROUGE) score metric is used to compare the performance of the CovSumm model with various state-of-the-art techniques. The proposed method achieved the highest scores of ROUGE-1: 40.14%, ROUGE-2: 13.25%, and ROUGE-L: 36.32%. The proposed hybrid approach shows improved performance on the CORD-19 dataset when compared to existing unsupervised text summarization methods.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":" ","pages":"1-23"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131559/pdf/","citationCount":"0","resultStr":"{\"title\":\"CovSumm: an unsupervised transformer-cum-graph-based hybrid document summarization model for CORD-19.\",\"authors\":\"Akanksha Karotia, Seba Susan\",\"doi\":\"10.1007/s11227-023-05291-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The number of research articles published on COVID-19 has dramatically increased since the outbreak of the pandemic in November 2019. This absurd rate of productivity in research articles leads to information overload. It has increasingly become urgent for researchers and medical associations to stay up to date on the latest COVID-19 studies. To address information overload in COVID-19 scientific literature, the study presents a novel hybrid model named CovSumm, an unsupervised graph-based hybrid approach for single-document summarization, that is evaluated on the CORD-19 dataset. We have tested the proposed methodology on the scientific papers in the database dated from January 1, 2021 to December 31, 2021, consisting of 840 documents in total. The proposed text summarization is a hybrid of two distinctive extractive approaches (1) GenCompareSum (transformer-based approach) and (2) TextRank (graph-based approach). The sum of scores generated by both methods is used to rank the sentences for generating the summary. On the CORD-19, the recall-oriented understudy for gisting evaluation (ROUGE) score metric is used to compare the performance of the CovSumm model with various state-of-the-art techniques. The proposed method achieved the highest scores of ROUGE-1: 40.14%, ROUGE-2: 13.25%, and ROUGE-L: 36.32%. The proposed hybrid approach shows improved performance on the CORD-19 dataset when compared to existing unsupervised text summarization methods.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\" \",\"pages\":\"1-23\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131559/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-023-05291-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05291-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
CovSumm: an unsupervised transformer-cum-graph-based hybrid document summarization model for CORD-19.
The number of research articles published on COVID-19 has dramatically increased since the outbreak of the pandemic in November 2019. This absurd rate of productivity in research articles leads to information overload. It has increasingly become urgent for researchers and medical associations to stay up to date on the latest COVID-19 studies. To address information overload in COVID-19 scientific literature, the study presents a novel hybrid model named CovSumm, an unsupervised graph-based hybrid approach for single-document summarization, that is evaluated on the CORD-19 dataset. We have tested the proposed methodology on the scientific papers in the database dated from January 1, 2021 to December 31, 2021, consisting of 840 documents in total. The proposed text summarization is a hybrid of two distinctive extractive approaches (1) GenCompareSum (transformer-based approach) and (2) TextRank (graph-based approach). The sum of scores generated by both methods is used to rank the sentences for generating the summary. On the CORD-19, the recall-oriented understudy for gisting evaluation (ROUGE) score metric is used to compare the performance of the CovSumm model with various state-of-the-art techniques. The proposed method achieved the highest scores of ROUGE-1: 40.14%, ROUGE-2: 13.25%, and ROUGE-L: 36.32%. The proposed hybrid approach shows improved performance on the CORD-19 dataset when compared to existing unsupervised text summarization methods.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.