{"title":"KG-MFEND:一种高效的基于知识图的多领域假新闻检测模型。","authors":"Lifang Fu, Huanxin Peng, Shuai Liu","doi":"10.1007/s11227-023-05381-2","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread dissemination of fake news on social media brings adverse effects on the public and social development. Most existing techniques are limited to a single domain (e.g., medicine or politics) to identify fake news. However, many differences exist commonly across domains, such as word usage, which lead to those methods performing poorly in other domains. In the real world, social media releases millions of news pieces in diverse domains every day. Therefore, it is of significant practical importance to propose a fake news detection model that can be applied to multiple domains. In this paper, we propose a novel framework based on knowledge graphs (KG) for multi-domain fake news detection, named KG-MFEND. The model's performance is enhanced by improving the BERT and integrating external knowledge to alleviate domain differences at the word level. Specifically, we construct a new KG that encompasses multi-domain knowledge and injects entity triples to build a sentence tree to enrich the news background knowledge. To solve the problem of embedding space and knowledge noise, we use the soft position and visible matrix in knowledge embedding. To reduce the influence of label noise, we add label smoothing to the training. Extensive experiments are conducted on real Chinese datasets. And the results show that KG-MFEND has a strong generalization capability in single, mixed, and multiple domains and outperforms the current state-of-the-art methods for multi-domain fake news detection.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":" ","pages":"1-28"},"PeriodicalIF":2.5000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184086/pdf/","citationCount":"2","resultStr":"{\"title\":\"KG-MFEND: an efficient knowledge graph-based model for multi-domain fake news detection.\",\"authors\":\"Lifang Fu, Huanxin Peng, Shuai Liu\",\"doi\":\"10.1007/s11227-023-05381-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread dissemination of fake news on social media brings adverse effects on the public and social development. Most existing techniques are limited to a single domain (e.g., medicine or politics) to identify fake news. However, many differences exist commonly across domains, such as word usage, which lead to those methods performing poorly in other domains. In the real world, social media releases millions of news pieces in diverse domains every day. Therefore, it is of significant practical importance to propose a fake news detection model that can be applied to multiple domains. In this paper, we propose a novel framework based on knowledge graphs (KG) for multi-domain fake news detection, named KG-MFEND. The model's performance is enhanced by improving the BERT and integrating external knowledge to alleviate domain differences at the word level. Specifically, we construct a new KG that encompasses multi-domain knowledge and injects entity triples to build a sentence tree to enrich the news background knowledge. To solve the problem of embedding space and knowledge noise, we use the soft position and visible matrix in knowledge embedding. To reduce the influence of label noise, we add label smoothing to the training. Extensive experiments are conducted on real Chinese datasets. And the results show that KG-MFEND has a strong generalization capability in single, mixed, and multiple domains and outperforms the current state-of-the-art methods for multi-domain fake news detection.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\" \",\"pages\":\"1-28\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184086/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-023-05381-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05381-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
KG-MFEND: an efficient knowledge graph-based model for multi-domain fake news detection.
The widespread dissemination of fake news on social media brings adverse effects on the public and social development. Most existing techniques are limited to a single domain (e.g., medicine or politics) to identify fake news. However, many differences exist commonly across domains, such as word usage, which lead to those methods performing poorly in other domains. In the real world, social media releases millions of news pieces in diverse domains every day. Therefore, it is of significant practical importance to propose a fake news detection model that can be applied to multiple domains. In this paper, we propose a novel framework based on knowledge graphs (KG) for multi-domain fake news detection, named KG-MFEND. The model's performance is enhanced by improving the BERT and integrating external knowledge to alleviate domain differences at the word level. Specifically, we construct a new KG that encompasses multi-domain knowledge and injects entity triples to build a sentence tree to enrich the news background knowledge. To solve the problem of embedding space and knowledge noise, we use the soft position and visible matrix in knowledge embedding. To reduce the influence of label noise, we add label smoothing to the training. Extensive experiments are conducted on real Chinese datasets. And the results show that KG-MFEND has a strong generalization capability in single, mixed, and multiple domains and outperforms the current state-of-the-art methods for multi-domain fake news detection.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.