使用情绪分析来评估新冠肺炎疫情对意大利国家声誉和股市表现的影响。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-04-03 DOI:10.1007/s10260-023-00690-5
Gianpaolo Zammarchi, Francesco Mola, Claudio Conversano
{"title":"使用情绪分析来评估新冠肺炎疫情对意大利国家声誉和股市表现的影响。","authors":"Gianpaolo Zammarchi,&nbsp;Francesco Mola,&nbsp;Claudio Conversano","doi":"10.1007/s10260-023-00690-5","DOIUrl":null,"url":null,"abstract":"<p><p>During the recent Coronavirus disease 2019 (COVID-19) outbreak, the microblogging service Twitter has been widely used to share opinions and reactions to events. Italy was one of the first European countries to be severely affected by the outbreak and to establish lockdown and stay-at-home orders, potentially leading to country reputation damage. We resort to sentiment analysis to investigate changes in opinions about Italy reported on Twitter before and after the COVID-19 outbreak. Using different lexicons-based methods, we find a breakpoint corresponding to the date of the first established case of COVID-19 in Italy that causes a relevant change in sentiment scores used as a proxy of the country's reputation. Next, we demonstrate that sentiment scores about Italy are associated with the values of the FTSE-MIB index, the Italian Stock Exchange main index, as they serve as early detection signals of changes in the values of FTSE-MIB. Lastly, we evaluate whether different machine learning classifiers were able to determine the polarity of tweets posted before and after the outbreak with a different level of accuracy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068702/pdf/","citationCount":"1","resultStr":"{\"title\":\"Using sentiment analysis to evaluate the impact of the COVID-19 outbreak on Italy's country reputation and stock market performance.\",\"authors\":\"Gianpaolo Zammarchi,&nbsp;Francesco Mola,&nbsp;Claudio Conversano\",\"doi\":\"10.1007/s10260-023-00690-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the recent Coronavirus disease 2019 (COVID-19) outbreak, the microblogging service Twitter has been widely used to share opinions and reactions to events. Italy was one of the first European countries to be severely affected by the outbreak and to establish lockdown and stay-at-home orders, potentially leading to country reputation damage. We resort to sentiment analysis to investigate changes in opinions about Italy reported on Twitter before and after the COVID-19 outbreak. Using different lexicons-based methods, we find a breakpoint corresponding to the date of the first established case of COVID-19 in Italy that causes a relevant change in sentiment scores used as a proxy of the country's reputation. Next, we demonstrate that sentiment scores about Italy are associated with the values of the FTSE-MIB index, the Italian Stock Exchange main index, as they serve as early detection signals of changes in the values of FTSE-MIB. Lastly, we evaluate whether different machine learning classifiers were able to determine the polarity of tweets posted before and after the outbreak with a different level of accuracy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068702/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10260-023-00690-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10260-023-00690-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在最近的2019冠状病毒病(新冠肺炎)爆发期间,微博服务推特被广泛用于分享对事件的看法和反应。意大利是最早受到疫情严重影响的欧洲国家之一,并制定了封锁和居家令,这可能会导致国家声誉受损。我们通过情绪分析来调查新冠肺炎爆发前后推特上对意大利的看法变化。使用不同的基于词典的方法,我们找到了一个断点,该断点对应于意大利第一例新冠肺炎确诊病例的日期,该断点会导致情绪得分的相关变化,而情绪得分被用作国家声誉的代表。接下来,我们证明了对意大利的情绪评分与意大利证券交易所主要指数FTSE-MIB指数的值有关,因为它们是FTSE-MIB值变化的早期检测信号。最后,我们评估了不同的机器学习分类器是否能够以不同的准确度确定疫情爆发前后发布的推文的极性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using sentiment analysis to evaluate the impact of the COVID-19 outbreak on Italy's country reputation and stock market performance.

During the recent Coronavirus disease 2019 (COVID-19) outbreak, the microblogging service Twitter has been widely used to share opinions and reactions to events. Italy was one of the first European countries to be severely affected by the outbreak and to establish lockdown and stay-at-home orders, potentially leading to country reputation damage. We resort to sentiment analysis to investigate changes in opinions about Italy reported on Twitter before and after the COVID-19 outbreak. Using different lexicons-based methods, we find a breakpoint corresponding to the date of the first established case of COVID-19 in Italy that causes a relevant change in sentiment scores used as a proxy of the country's reputation. Next, we demonstrate that sentiment scores about Italy are associated with the values of the FTSE-MIB index, the Italian Stock Exchange main index, as they serve as early detection signals of changes in the values of FTSE-MIB. Lastly, we evaluate whether different machine learning classifiers were able to determine the polarity of tweets posted before and after the outbreak with a different level of accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1