Mustafa Alassad, Muhammad Nihal Hussain, Nitin Agarwal
{"title":"开发一个基于代理的模型,以最大限度地减少恶意信息在动态社交网络中的传播。","authors":"Mustafa Alassad, Muhammad Nihal Hussain, Nitin Agarwal","doi":"10.1007/s10588-023-09375-6","DOIUrl":null,"url":null,"abstract":"<p><p>This research introduces a systematic and multidisciplinary agent-based model to interpret and simplify the dynamic actions of the users and communities in an evolutionary online (offline) social network. The organizational cybernetics approach is used to control/monitor the malicious information spread between communities. The stochastic one-median problem minimizes the agent response time and eliminates the information spread across the online (offline) environment. The performance of these methods was measured against a Twitter network related to an armed protest demonstration against the COVID-19 lockdown in Michigan state in May 2020. The proposed model demonstrated the dynamicity of the network, enhanced the agent level performance, minimized the malicious information spread, and measured the response to the second stochastic information spread in the network.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090746/pdf/","citationCount":"1","resultStr":"{\"title\":\"Developing an agent-based model to minimize spreading of malicious information in dynamic social networks.\",\"authors\":\"Mustafa Alassad, Muhammad Nihal Hussain, Nitin Agarwal\",\"doi\":\"10.1007/s10588-023-09375-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research introduces a systematic and multidisciplinary agent-based model to interpret and simplify the dynamic actions of the users and communities in an evolutionary online (offline) social network. The organizational cybernetics approach is used to control/monitor the malicious information spread between communities. The stochastic one-median problem minimizes the agent response time and eliminates the information spread across the online (offline) environment. The performance of these methods was measured against a Twitter network related to an armed protest demonstration against the COVID-19 lockdown in Michigan state in May 2020. The proposed model demonstrated the dynamicity of the network, enhanced the agent level performance, minimized the malicious information spread, and measured the response to the second stochastic information spread in the network.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090746/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s10588-023-09375-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10588-023-09375-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Developing an agent-based model to minimize spreading of malicious information in dynamic social networks.
This research introduces a systematic and multidisciplinary agent-based model to interpret and simplify the dynamic actions of the users and communities in an evolutionary online (offline) social network. The organizational cybernetics approach is used to control/monitor the malicious information spread between communities. The stochastic one-median problem minimizes the agent response time and eliminates the information spread across the online (offline) environment. The performance of these methods was measured against a Twitter network related to an armed protest demonstration against the COVID-19 lockdown in Michigan state in May 2020. The proposed model demonstrated the dynamicity of the network, enhanced the agent level performance, minimized the malicious information spread, and measured the response to the second stochastic information spread in the network.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.