Jeffrey L Coleman, Jennifer T Wyffels, Linda M Penfold, Daryl Richardson, J Dylan Maddox
{"title":"巨嘴鸟生殖管理遗传标记的开发。","authors":"Jeffrey L Coleman, Jennifer T Wyffels, Linda M Penfold, Daryl Richardson, J Dylan Maddox","doi":"10.1002/zoo.21792","DOIUrl":null,"url":null,"abstract":"<p><p>Retention of genetic diversity in successive generations is key to successful ex situ programs and will become increasingly important to restore wild populations of threatened animals. When animal genealogy is partly unknown or gaps exist in studbook records, the application of molecular resources facilitates informed breeding. Here, we apply molecular resources to an ex situ breeding population of toucans (Ramphastidae), a bird family zoos commonly maintain. Toucans face population declines from illegal poaching and habitat degradation. We developed novel microsatellite markers using blood samples from 15 Keel-billed Toucans (Ramphastos sulfuratus Lesson 1830). Parentage of two individuals was known a priori, but possible sibship among 13 putative founders-including the parents-was unknown. We compared available avian heterologous and novel microsatellite markers to recover known relationships and reconstruct sibship. Eight of 61 heterologous markers amplified consistently and were polymorphic, but less so than the 18 novel markers. Known sibship (and three sibling pairs whose relatedness was unknown a priori) and paternity-though not maternity except in one case-were well-recovered using both likelihood and pairwise relatedness methods, when incorporating novel but not heterologous markers. Zoo researchers seeking microsatellite primer sets for their breeding toucan populations will likely benefit from our heterologous markers, which can be leveraged both to assess relatedness and select breeding pairs. We recommend that zoo biologists rely on species-specific primers and not optimize heterologous primers for toucan species without molecular resources. We conclude with a brief discussion of modern genotyping methods of interest to zoo researchers.</p>","PeriodicalId":24035,"journal":{"name":"Zoo Biology","volume":" ","pages":"825-833"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of genetic markers for reproductive management of toucans.\",\"authors\":\"Jeffrey L Coleman, Jennifer T Wyffels, Linda M Penfold, Daryl Richardson, J Dylan Maddox\",\"doi\":\"10.1002/zoo.21792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retention of genetic diversity in successive generations is key to successful ex situ programs and will become increasingly important to restore wild populations of threatened animals. When animal genealogy is partly unknown or gaps exist in studbook records, the application of molecular resources facilitates informed breeding. Here, we apply molecular resources to an ex situ breeding population of toucans (Ramphastidae), a bird family zoos commonly maintain. Toucans face population declines from illegal poaching and habitat degradation. We developed novel microsatellite markers using blood samples from 15 Keel-billed Toucans (Ramphastos sulfuratus Lesson 1830). Parentage of two individuals was known a priori, but possible sibship among 13 putative founders-including the parents-was unknown. We compared available avian heterologous and novel microsatellite markers to recover known relationships and reconstruct sibship. Eight of 61 heterologous markers amplified consistently and were polymorphic, but less so than the 18 novel markers. Known sibship (and three sibling pairs whose relatedness was unknown a priori) and paternity-though not maternity except in one case-were well-recovered using both likelihood and pairwise relatedness methods, when incorporating novel but not heterologous markers. Zoo researchers seeking microsatellite primer sets for their breeding toucan populations will likely benefit from our heterologous markers, which can be leveraged both to assess relatedness and select breeding pairs. We recommend that zoo biologists rely on species-specific primers and not optimize heterologous primers for toucan species without molecular resources. We conclude with a brief discussion of modern genotyping methods of interest to zoo researchers.</p>\",\"PeriodicalId\":24035,\"journal\":{\"name\":\"Zoo Biology\",\"volume\":\" \",\"pages\":\"825-833\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoo Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/zoo.21792\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoo Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/zoo.21792","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Development of genetic markers for reproductive management of toucans.
Retention of genetic diversity in successive generations is key to successful ex situ programs and will become increasingly important to restore wild populations of threatened animals. When animal genealogy is partly unknown or gaps exist in studbook records, the application of molecular resources facilitates informed breeding. Here, we apply molecular resources to an ex situ breeding population of toucans (Ramphastidae), a bird family zoos commonly maintain. Toucans face population declines from illegal poaching and habitat degradation. We developed novel microsatellite markers using blood samples from 15 Keel-billed Toucans (Ramphastos sulfuratus Lesson 1830). Parentage of two individuals was known a priori, but possible sibship among 13 putative founders-including the parents-was unknown. We compared available avian heterologous and novel microsatellite markers to recover known relationships and reconstruct sibship. Eight of 61 heterologous markers amplified consistently and were polymorphic, but less so than the 18 novel markers. Known sibship (and three sibling pairs whose relatedness was unknown a priori) and paternity-though not maternity except in one case-were well-recovered using both likelihood and pairwise relatedness methods, when incorporating novel but not heterologous markers. Zoo researchers seeking microsatellite primer sets for their breeding toucan populations will likely benefit from our heterologous markers, which can be leveraged both to assess relatedness and select breeding pairs. We recommend that zoo biologists rely on species-specific primers and not optimize heterologous primers for toucan species without molecular resources. We conclude with a brief discussion of modern genotyping methods of interest to zoo researchers.
期刊介绍:
Zoo Biology is concerned with reproduction, demographics, genetics, behavior, medicine, husbandry, nutrition, conservation and all empirical aspects of the exhibition and maintenance of wild animals in wildlife parks, zoos, and aquariums. This diverse journal offers a forum for effectively communicating scientific findings, original ideas, and critical thinking related to the role of wildlife collections and their unique contribution to conservation.