一种新型被动手颤衰减器的计算研究与验证。

Manthan Shah, Dylan Goode, Hadi Mohammadi
{"title":"一种新型被动手颤衰减器的计算研究与验证。","authors":"Manthan Shah,&nbsp;Dylan Goode,&nbsp;Hadi Mohammadi","doi":"10.1080/03091902.2022.2134482","DOIUrl":null,"url":null,"abstract":"<p><p>Tremors are a prevalent movement disorder due to a nervous system condition that leads to involuntary muscle movements observed in patients. This paper converts the tremorous anatomical human arm model to a single degree of freedom (SDOF) forced vibration problem. The mathematical modelling with Euler-Lagrange's equation is performed for the SDOF human arm model with two different potential vibration absorbers. A computational study is conducted on MATLAB Simulink by MathWorks Inc. (Natick, MA) to compare two absorbers, and the results are verified on the multibody dynamics simulation solution software, MSC Adams by Hexagon AB. It is concluded that the T beam-shaped vibration absorber represented a higher amplitude reduction, up to 80%, compared to the inertial mass absorber, which had an amplitude reduction of 65% over the range of frequencies. Experiments conducted with the T beam absorber prototype also support the computational findings. Future research focuses on designing an ergonomic wearable device with a proposed T-beam absorber that can passively attenuate the tremor at various frequencies.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational study and validation of a novel passive hand tremor attenuator.\",\"authors\":\"Manthan Shah,&nbsp;Dylan Goode,&nbsp;Hadi Mohammadi\",\"doi\":\"10.1080/03091902.2022.2134482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tremors are a prevalent movement disorder due to a nervous system condition that leads to involuntary muscle movements observed in patients. This paper converts the tremorous anatomical human arm model to a single degree of freedom (SDOF) forced vibration problem. The mathematical modelling with Euler-Lagrange's equation is performed for the SDOF human arm model with two different potential vibration absorbers. A computational study is conducted on MATLAB Simulink by MathWorks Inc. (Natick, MA) to compare two absorbers, and the results are verified on the multibody dynamics simulation solution software, MSC Adams by Hexagon AB. It is concluded that the T beam-shaped vibration absorber represented a higher amplitude reduction, up to 80%, compared to the inertial mass absorber, which had an amplitude reduction of 65% over the range of frequencies. Experiments conducted with the T beam absorber prototype also support the computational findings. Future research focuses on designing an ergonomic wearable device with a proposed T-beam absorber that can passively attenuate the tremor at various frequencies.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2022.2134482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2022.2134482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

震颤是一种普遍的运动障碍,由于神经系统状况导致患者观察到的不随意肌肉运动。本文将震颤人体手臂解剖模型转化为单自由度强迫振动问题。用欧拉-拉格朗日方程对具有两种不同吸振位的SDOF人体手臂模型进行了数学建模。在MathWorks Inc. (Natick, MA)的MATLAB Simulink上进行了计算研究,比较了两种吸振器,并在Hexagon AB公司的多体动力学仿真解决方案软件MSC Adams上验证了结果。结论是,与惯性质量吸振器相比,T梁形吸振器在频率范围内的幅度降低了65%,幅度降低了80%。用T梁吸收体原型进行的实验也支持了计算结果。未来的研究重点是设计一种符合人体工程学的可穿戴设备,该设备带有拟议的t束吸收器,可以被动地衰减不同频率的震颤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational study and validation of a novel passive hand tremor attenuator.

Tremors are a prevalent movement disorder due to a nervous system condition that leads to involuntary muscle movements observed in patients. This paper converts the tremorous anatomical human arm model to a single degree of freedom (SDOF) forced vibration problem. The mathematical modelling with Euler-Lagrange's equation is performed for the SDOF human arm model with two different potential vibration absorbers. A computational study is conducted on MATLAB Simulink by MathWorks Inc. (Natick, MA) to compare two absorbers, and the results are verified on the multibody dynamics simulation solution software, MSC Adams by Hexagon AB. It is concluded that the T beam-shaped vibration absorber represented a higher amplitude reduction, up to 80%, compared to the inertial mass absorber, which had an amplitude reduction of 65% over the range of frequencies. Experiments conducted with the T beam absorber prototype also support the computational findings. Future research focuses on designing an ergonomic wearable device with a proposed T-beam absorber that can passively attenuate the tremor at various frequencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
期刊最新文献
News and product update. Safety, feasibility, and acceptability of a novel device to monitor ischaemic stroke patients. An enhanced Garter Snake Optimization-assisted deep learning model for lung cancer segmentation and classification using CT images. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. Characterisation of pulmonary air leak measurements using a mechanical ventilator in a bench setup.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1