Jerónimo S García, Savíns Puertas-Martín, Juana L Redondo, Juan José Moreno, Pilar M Ortigosa
{"title":"通过并行改进药物发现。","authors":"Jerónimo S García, Savíns Puertas-Martín, Juana L Redondo, Juan José Moreno, Pilar M Ortigosa","doi":"10.1007/s11227-022-05014-0","DOIUrl":null,"url":null,"abstract":"<p><p>Compound identification in ligand-based virtual screening is limited by two key issues: the quality and the time needed to obtain predictions. In this sense, we designed OptiPharm, an algorithm that obtained excellent results in improving the sequential methods in the literature. In this work, we go a step further and propose its parallelization. Specifically, we propose a two-layer parallelization. Firstly, an automation of the molecule distribution process between the available nodes in a cluster, and secondly, a parallelization of the internal methods (initialization, reproduction, selection and optimization). This new software, called pOptiPharm, aims to improve the quality of predictions and reduce experimentation time. As the results show, the performance of the proposed methods is good. It can find better solutions than the sequential OptiPharm, all while reducing its computation time almost proportionally to the number of processing units considered.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"79 9","pages":"9538-9557"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842220/pdf/","citationCount":"1","resultStr":"{\"title\":\"Improving drug discovery through parallelism.\",\"authors\":\"Jerónimo S García, Savíns Puertas-Martín, Juana L Redondo, Juan José Moreno, Pilar M Ortigosa\",\"doi\":\"10.1007/s11227-022-05014-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compound identification in ligand-based virtual screening is limited by two key issues: the quality and the time needed to obtain predictions. In this sense, we designed OptiPharm, an algorithm that obtained excellent results in improving the sequential methods in the literature. In this work, we go a step further and propose its parallelization. Specifically, we propose a two-layer parallelization. Firstly, an automation of the molecule distribution process between the available nodes in a cluster, and secondly, a parallelization of the internal methods (initialization, reproduction, selection and optimization). This new software, called pOptiPharm, aims to improve the quality of predictions and reduce experimentation time. As the results show, the performance of the proposed methods is good. It can find better solutions than the sequential OptiPharm, all while reducing its computation time almost proportionally to the number of processing units considered.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"79 9\",\"pages\":\"9538-9557\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842220/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-022-05014-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-022-05014-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Compound identification in ligand-based virtual screening is limited by two key issues: the quality and the time needed to obtain predictions. In this sense, we designed OptiPharm, an algorithm that obtained excellent results in improving the sequential methods in the literature. In this work, we go a step further and propose its parallelization. Specifically, we propose a two-layer parallelization. Firstly, an automation of the molecule distribution process between the available nodes in a cluster, and secondly, a parallelization of the internal methods (initialization, reproduction, selection and optimization). This new software, called pOptiPharm, aims to improve the quality of predictions and reduce experimentation time. As the results show, the performance of the proposed methods is good. It can find better solutions than the sequential OptiPharm, all while reducing its computation time almost proportionally to the number of processing units considered.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.