Louis Galey , Sabyne Audignon , Patrick Brochard , Maximilien Debia , Aude Lacourt , Pierre Lambert , Olivier Le Bihan , Laurent Martinon , Sébastien Bau , Olivier Witschger , Alain Garrigou
{"title":"评估职业暴露于空气中纳米颗粒的策略:系统回顾和建议","authors":"Louis Galey , Sabyne Audignon , Patrick Brochard , Maximilien Debia , Aude Lacourt , Pierre Lambert , Olivier Le Bihan , Laurent Martinon , Sébastien Bau , Olivier Witschger , Alain Garrigou","doi":"10.1016/j.shaw.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>In many industrial sectors, workers are exposed to manufactured or unintentionally emitted airborne nanoparticles (NPs). To develop prevention and enhance knowledge surrounding exposure, it has become crucial to achieve a consensus on how to assess exposure to airborne NPs by inhalation in the workplace. Here, we review the literature presenting recommendations on assessing occupational exposure to NPs. The 23 distinct strategies retained were analyzed in terms of the following points: target NPs, objectives, steps, “measurement strategy” (instruments, physicochemical analysis, and data processing), “contextual information” presented, and “work activity” analysis. The robustness (consistency of information) and practical aspects (detailed methodology) of each strategy were estimated. The objectives and methodological steps varied, as did the measurement techniques. Strategies were essentially based on NPs measurement, but improvements could be made to better account for “contextual information” and “work activity”. Based on this review, recommendations for an operational strategy were formulated, integrating the work activity with the measurement to provide a more complete assessment of situations leading to airborne NP exposure. These recommendations can be used with the objective of producing homogeneous exposure data for epidemiological purposes and to help improve prevention strategies.</p></div>","PeriodicalId":56149,"journal":{"name":"Safety and Health at Work","volume":"14 2","pages":"Pages 163-173"},"PeriodicalIF":3.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300466/pdf/","citationCount":"1","resultStr":"{\"title\":\"Strategies to Assess Occupational Exposure to Airborne Nanoparticles: Systematic Review and Recommendations\",\"authors\":\"Louis Galey , Sabyne Audignon , Patrick Brochard , Maximilien Debia , Aude Lacourt , Pierre Lambert , Olivier Le Bihan , Laurent Martinon , Sébastien Bau , Olivier Witschger , Alain Garrigou\",\"doi\":\"10.1016/j.shaw.2023.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In many industrial sectors, workers are exposed to manufactured or unintentionally emitted airborne nanoparticles (NPs). To develop prevention and enhance knowledge surrounding exposure, it has become crucial to achieve a consensus on how to assess exposure to airborne NPs by inhalation in the workplace. Here, we review the literature presenting recommendations on assessing occupational exposure to NPs. The 23 distinct strategies retained were analyzed in terms of the following points: target NPs, objectives, steps, “measurement strategy” (instruments, physicochemical analysis, and data processing), “contextual information” presented, and “work activity” analysis. The robustness (consistency of information) and practical aspects (detailed methodology) of each strategy were estimated. The objectives and methodological steps varied, as did the measurement techniques. Strategies were essentially based on NPs measurement, but improvements could be made to better account for “contextual information” and “work activity”. Based on this review, recommendations for an operational strategy were formulated, integrating the work activity with the measurement to provide a more complete assessment of situations leading to airborne NP exposure. These recommendations can be used with the objective of producing homogeneous exposure data for epidemiological purposes and to help improve prevention strategies.</p></div>\",\"PeriodicalId\":56149,\"journal\":{\"name\":\"Safety and Health at Work\",\"volume\":\"14 2\",\"pages\":\"Pages 163-173\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300466/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Safety and Health at Work\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2093791123000070\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Safety and Health at Work","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2093791123000070","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Strategies to Assess Occupational Exposure to Airborne Nanoparticles: Systematic Review and Recommendations
In many industrial sectors, workers are exposed to manufactured or unintentionally emitted airborne nanoparticles (NPs). To develop prevention and enhance knowledge surrounding exposure, it has become crucial to achieve a consensus on how to assess exposure to airborne NPs by inhalation in the workplace. Here, we review the literature presenting recommendations on assessing occupational exposure to NPs. The 23 distinct strategies retained were analyzed in terms of the following points: target NPs, objectives, steps, “measurement strategy” (instruments, physicochemical analysis, and data processing), “contextual information” presented, and “work activity” analysis. The robustness (consistency of information) and practical aspects (detailed methodology) of each strategy were estimated. The objectives and methodological steps varied, as did the measurement techniques. Strategies were essentially based on NPs measurement, but improvements could be made to better account for “contextual information” and “work activity”. Based on this review, recommendations for an operational strategy were formulated, integrating the work activity with the measurement to provide a more complete assessment of situations leading to airborne NP exposure. These recommendations can be used with the objective of producing homogeneous exposure data for epidemiological purposes and to help improve prevention strategies.
期刊介绍:
Safety and Health at Work (SH@W) is an international, peer-reviewed, interdisciplinary journal published quarterly in English beginning in 2010. The journal is aimed at providing grounds for the exchange of ideas and data developed through research experience in the broad field of occupational health and safety. Articles may deal with scientific research to improve workers'' health and safety by eliminating occupational accidents and diseases, pursuing a better working life, and creating a safe and comfortable working environment. The journal focuses primarily on original articles across the whole scope of occupational health and safety, but also welcomes up-to-date review papers and short communications and commentaries on urgent issues and case studies on unique epidemiological survey, methods of accident investigation, and analysis. High priority will be given to articles on occupational epidemiology, medicine, hygiene, toxicology, nursing and health services, work safety, ergonomics, work organization, engineering of safety (mechanical, electrical, chemical, and construction), safety management and policy, and studies related to economic evaluation and its social policy and organizational aspects. Its abbreviated title is Saf Health Work.