Huiyue Zhong , Wenjing Yu , Min Wang , Bo Lin , Xuezhao Sun , Nan Zheng , Jiaqi Wang , Shengguo Zhao
{"title":"丁酸钠通过抑制炎症、平衡营养代谢和优化微生物群落功能促进断奶前小牛胃肠道发育","authors":"Huiyue Zhong , Wenjing Yu , Min Wang , Bo Lin , Xuezhao Sun , Nan Zheng , Jiaqi Wang , Shengguo Zhao","doi":"10.1016/j.aninu.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Butyrate promotes the growth and gastrointestinal development of calves. But, the mechanisms behind its effects on signaling pathways of the gastrointestinal tract and rumen microbiome is unclear. This study aimed to reveal transcriptomic pathways of gastrointestinal epithelium and microbial community in response to butyrate supplementation in calves fed a high fiber starter. Fourteen Holstein bull calves (39.9 ± 3.7 kg, 14 d of age) were assigned to 2 groups (sodium butyrate group, SB; control group, Ctrl). The SB group received 0.5% SB supplementation. At d 51, the calves were slaughtered to obtain samples for analysis of the transcriptome of the rumen and jejunum epithelium as well as ruminal microbial metagenome. Sodium butyrate supplementation resulted in a higher performance in average daily gain and development of jejunum and rumen papillae. In both the rumen and jejunum epithelium, SB down-regulated pathways related to inflammation including NF-κB (<em>PPKCB, CXCL8, CXCL12</em>), interleukin-17 (<em>IL17A, IL17B, MMP9</em>), and chemokine (<em>CXCL12, CCL4, CCL8</em>) and up-regulated immune pathways including the intestinal immune network for immunoglobulin A (IgA) production (<em>CD28</em>). Meanwhile, in the jejunum epithelium, SB regulated pathways related to nutritional metabolism including nitrogen metabolism (<em>CA1, CA2, CA3</em>), synthesis and degradation of ketone bodies (<em>HMGCS2, BDH1</em>, <em>LOC100295719</em>), fat digestion and absorption (<em>PLA2G2F, APOA1, APOA4</em>), and the PPAR signaling pathway (<em>FABP4, FABP6, CYP4A11</em>). The metagenome showed that SB greatly increased the relative abundance of <em>Bacillus subtilis</em> and <em>Eubacterium limosum</em>, activated ruminal microbial carbohydrate metabolism pathways and increased the abundance of carbohydrate hydrolysis enzymes. In conclusion, butyrate exhibited promoting effects on growth and gastrointestinal development by inhibiting inflammation, enhancing immunity and energy harvesting, and activating microbial carbohydrate metabolism. These findings provide new insights into the potential mechanisms behind the beneficial effects of butyrate in calf nutrition.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"14 ","pages":"Pages 88-100"},"PeriodicalIF":6.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/4e/main.PMC10300058.pdf","citationCount":"2","resultStr":"{\"title\":\"Sodium butyrate promotes gastrointestinal development of preweaning bull calves via inhibiting inflammation, balancing nutrient metabolism, and optimizing microbial community functions\",\"authors\":\"Huiyue Zhong , Wenjing Yu , Min Wang , Bo Lin , Xuezhao Sun , Nan Zheng , Jiaqi Wang , Shengguo Zhao\",\"doi\":\"10.1016/j.aninu.2023.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Butyrate promotes the growth and gastrointestinal development of calves. But, the mechanisms behind its effects on signaling pathways of the gastrointestinal tract and rumen microbiome is unclear. This study aimed to reveal transcriptomic pathways of gastrointestinal epithelium and microbial community in response to butyrate supplementation in calves fed a high fiber starter. Fourteen Holstein bull calves (39.9 ± 3.7 kg, 14 d of age) were assigned to 2 groups (sodium butyrate group, SB; control group, Ctrl). The SB group received 0.5% SB supplementation. At d 51, the calves were slaughtered to obtain samples for analysis of the transcriptome of the rumen and jejunum epithelium as well as ruminal microbial metagenome. Sodium butyrate supplementation resulted in a higher performance in average daily gain and development of jejunum and rumen papillae. In both the rumen and jejunum epithelium, SB down-regulated pathways related to inflammation including NF-κB (<em>PPKCB, CXCL8, CXCL12</em>), interleukin-17 (<em>IL17A, IL17B, MMP9</em>), and chemokine (<em>CXCL12, CCL4, CCL8</em>) and up-regulated immune pathways including the intestinal immune network for immunoglobulin A (IgA) production (<em>CD28</em>). Meanwhile, in the jejunum epithelium, SB regulated pathways related to nutritional metabolism including nitrogen metabolism (<em>CA1, CA2, CA3</em>), synthesis and degradation of ketone bodies (<em>HMGCS2, BDH1</em>, <em>LOC100295719</em>), fat digestion and absorption (<em>PLA2G2F, APOA1, APOA4</em>), and the PPAR signaling pathway (<em>FABP4, FABP6, CYP4A11</em>). The metagenome showed that SB greatly increased the relative abundance of <em>Bacillus subtilis</em> and <em>Eubacterium limosum</em>, activated ruminal microbial carbohydrate metabolism pathways and increased the abundance of carbohydrate hydrolysis enzymes. In conclusion, butyrate exhibited promoting effects on growth and gastrointestinal development by inhibiting inflammation, enhancing immunity and energy harvesting, and activating microbial carbohydrate metabolism. These findings provide new insights into the potential mechanisms behind the beneficial effects of butyrate in calf nutrition.</p></div>\",\"PeriodicalId\":62604,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"14 \",\"pages\":\"Pages 88-100\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/4e/main.PMC10300058.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405654523000434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405654523000434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sodium butyrate promotes gastrointestinal development of preweaning bull calves via inhibiting inflammation, balancing nutrient metabolism, and optimizing microbial community functions
Butyrate promotes the growth and gastrointestinal development of calves. But, the mechanisms behind its effects on signaling pathways of the gastrointestinal tract and rumen microbiome is unclear. This study aimed to reveal transcriptomic pathways of gastrointestinal epithelium and microbial community in response to butyrate supplementation in calves fed a high fiber starter. Fourteen Holstein bull calves (39.9 ± 3.7 kg, 14 d of age) were assigned to 2 groups (sodium butyrate group, SB; control group, Ctrl). The SB group received 0.5% SB supplementation. At d 51, the calves were slaughtered to obtain samples for analysis of the transcriptome of the rumen and jejunum epithelium as well as ruminal microbial metagenome. Sodium butyrate supplementation resulted in a higher performance in average daily gain and development of jejunum and rumen papillae. In both the rumen and jejunum epithelium, SB down-regulated pathways related to inflammation including NF-κB (PPKCB, CXCL8, CXCL12), interleukin-17 (IL17A, IL17B, MMP9), and chemokine (CXCL12, CCL4, CCL8) and up-regulated immune pathways including the intestinal immune network for immunoglobulin A (IgA) production (CD28). Meanwhile, in the jejunum epithelium, SB regulated pathways related to nutritional metabolism including nitrogen metabolism (CA1, CA2, CA3), synthesis and degradation of ketone bodies (HMGCS2, BDH1, LOC100295719), fat digestion and absorption (PLA2G2F, APOA1, APOA4), and the PPAR signaling pathway (FABP4, FABP6, CYP4A11). The metagenome showed that SB greatly increased the relative abundance of Bacillus subtilis and Eubacterium limosum, activated ruminal microbial carbohydrate metabolism pathways and increased the abundance of carbohydrate hydrolysis enzymes. In conclusion, butyrate exhibited promoting effects on growth and gastrointestinal development by inhibiting inflammation, enhancing immunity and energy harvesting, and activating microbial carbohydrate metabolism. These findings provide new insights into the potential mechanisms behind the beneficial effects of butyrate in calf nutrition.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.