Fatemeh Forouzanfar, Ali Mohammad Pourbagher-Shahri, Majid Darroudi, Mahmood Sadeghi, Farzaneh Vafaee, Omid Fakharzadeh Moghadam, Negar Moghaddas Mashhad, Hamed Ghazavi, Mohammad Bagher Khorrami
{"title":"氧化铈纳米颗粒改善神经病变大鼠的氧化应激、炎症和疼痛行为。","authors":"Fatemeh Forouzanfar, Ali Mohammad Pourbagher-Shahri, Majid Darroudi, Mahmood Sadeghi, Farzaneh Vafaee, Omid Fakharzadeh Moghadam, Negar Moghaddas Mashhad, Hamed Ghazavi, Mohammad Bagher Khorrami","doi":"10.2174/1567202620666230125104604","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuropathic pain originating from a dysfunction in the nervous system is often intractable and chronic. Recently, several studies using nanoparticles suggested a new way to control neuropathic pain. This study intended to explore the potential neuroprotective effect of Cerium Oxide Nanoparticles (CNPs) synthesized by pullulan in neuropathic pain in rats.</p><p><strong>Methods: </strong>On the right common sciatic nerve of male Wistar rats, the chronic constriction injury (CCI) procedure was used to establish a neuropathic pain model. CNPs were injected into the caudal vein of the rat. Behavioral methods were used to detect mechanical allodynia, cold allodynia, and thermal hyperalgesia in rats. Besides, inflammation factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nitric oxide (NO), and markers of oxidative stress, including Malondialdehyde (MDA) and total thiol, were measured in the spinal cord segment of rats.</p><p><strong>Results: </strong>In rats with CCI, mechanical allodynia, cold allodynia, and thermal hyperalgesia developed, which improved when the rats were administered CNPs. Spinal cord specimens of CCI rats had elevated inflammation and oxidative stress status (↑IL-1β, ↑TNF-α, ↑NO, ↑MDA) and decreased antioxidative levels (↓total thiol). As a result of CNPs treatment, these changes were reversed in the spinal cord specimens.</p><p><strong>Conclusion: </strong>CNPs alleviate neuropathic pain by exhibiting antioxidative and anti-inflammatory activities.</p>","PeriodicalId":10879,"journal":{"name":"Current neurovascular research","volume":"20 1","pages":"54-61"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cerium Oxide Nanoparticles Ameliorate Oxidative Stress, Inflammation, and Pain Behavior in Neuropathic Rats.\",\"authors\":\"Fatemeh Forouzanfar, Ali Mohammad Pourbagher-Shahri, Majid Darroudi, Mahmood Sadeghi, Farzaneh Vafaee, Omid Fakharzadeh Moghadam, Negar Moghaddas Mashhad, Hamed Ghazavi, Mohammad Bagher Khorrami\",\"doi\":\"10.2174/1567202620666230125104604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neuropathic pain originating from a dysfunction in the nervous system is often intractable and chronic. Recently, several studies using nanoparticles suggested a new way to control neuropathic pain. This study intended to explore the potential neuroprotective effect of Cerium Oxide Nanoparticles (CNPs) synthesized by pullulan in neuropathic pain in rats.</p><p><strong>Methods: </strong>On the right common sciatic nerve of male Wistar rats, the chronic constriction injury (CCI) procedure was used to establish a neuropathic pain model. CNPs were injected into the caudal vein of the rat. Behavioral methods were used to detect mechanical allodynia, cold allodynia, and thermal hyperalgesia in rats. Besides, inflammation factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nitric oxide (NO), and markers of oxidative stress, including Malondialdehyde (MDA) and total thiol, were measured in the spinal cord segment of rats.</p><p><strong>Results: </strong>In rats with CCI, mechanical allodynia, cold allodynia, and thermal hyperalgesia developed, which improved when the rats were administered CNPs. Spinal cord specimens of CCI rats had elevated inflammation and oxidative stress status (↑IL-1β, ↑TNF-α, ↑NO, ↑MDA) and decreased antioxidative levels (↓total thiol). As a result of CNPs treatment, these changes were reversed in the spinal cord specimens.</p><p><strong>Conclusion: </strong>CNPs alleviate neuropathic pain by exhibiting antioxidative and anti-inflammatory activities.</p>\",\"PeriodicalId\":10879,\"journal\":{\"name\":\"Current neurovascular research\",\"volume\":\"20 1\",\"pages\":\"54-61\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current neurovascular research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567202620666230125104604\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurovascular research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567202620666230125104604","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Cerium Oxide Nanoparticles Ameliorate Oxidative Stress, Inflammation, and Pain Behavior in Neuropathic Rats.
Background: Neuropathic pain originating from a dysfunction in the nervous system is often intractable and chronic. Recently, several studies using nanoparticles suggested a new way to control neuropathic pain. This study intended to explore the potential neuroprotective effect of Cerium Oxide Nanoparticles (CNPs) synthesized by pullulan in neuropathic pain in rats.
Methods: On the right common sciatic nerve of male Wistar rats, the chronic constriction injury (CCI) procedure was used to establish a neuropathic pain model. CNPs were injected into the caudal vein of the rat. Behavioral methods were used to detect mechanical allodynia, cold allodynia, and thermal hyperalgesia in rats. Besides, inflammation factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nitric oxide (NO), and markers of oxidative stress, including Malondialdehyde (MDA) and total thiol, were measured in the spinal cord segment of rats.
Results: In rats with CCI, mechanical allodynia, cold allodynia, and thermal hyperalgesia developed, which improved when the rats were administered CNPs. Spinal cord specimens of CCI rats had elevated inflammation and oxidative stress status (↑IL-1β, ↑TNF-α, ↑NO, ↑MDA) and decreased antioxidative levels (↓total thiol). As a result of CNPs treatment, these changes were reversed in the spinal cord specimens.
Conclusion: CNPs alleviate neuropathic pain by exhibiting antioxidative and anti-inflammatory activities.
期刊介绍:
Current Neurovascular Research provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum publishing novel and original work as well as timely neuroscience research articles, full-length/mini reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridges the gap between basic science research and clinical discovery. Current Neurovascular Research emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.