{"title":"使用辣木籽油负载他克莫司的纳米结构脂质载体:设计、优化和体外评价。","authors":"Rajat Garg, Anuj Garg","doi":"10.1080/02652048.2023.2231075","DOIUrl":null,"url":null,"abstract":"<p><p>The proposed research aims to develop Tacrolimus-loaded nanostructured lipid carriers (TAC-loaded NLCs) to overcome poor aqueous solubility and dissolution rate to enhance its oral absorption. A central composite design was used to optimise the amount of Poloxamer 188 and D-α-Tocopherol-polyethylene-glycol-succinate (TPGS). The optimised TAC-loaded NLCs contain stearic acid (250 mg), <i>Moringa oleifera</i> (MO) seed oil (50 mg), TAC (Tacrolimus: 10 mg), TPGS (60 mg), and Poloxamer 188 (1% w/v) with a mean diameter of 393.3 ± 29.68 nm, a zeta potential of -18.3 ± 6.19 mV, high entrapment efficiency (92.12 ± 1.14% w/w), and desirability (0.989). TAC-loaded NLCs showed ∼12 times higher drug dissolution efficiency, while <i>in-vitro</i> anti-inflammatory studies showed ∼1.8 times lower IC<sub>50</sub> (half-maximal inhibitory concentration) than TAC suspension. The lyophilised TAC-loaded NLCs were found to be stable after 3 months. Thus, the present study concludes the successful encapsulation of TAC in NLCs made of stearic acid and MO seed oil.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"502-516"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tacrolimus loaded nanostructured lipid carriers using Moringa oleifera seed oil: design, optimization and in-vitro evaluations.\",\"authors\":\"Rajat Garg, Anuj Garg\",\"doi\":\"10.1080/02652048.2023.2231075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proposed research aims to develop Tacrolimus-loaded nanostructured lipid carriers (TAC-loaded NLCs) to overcome poor aqueous solubility and dissolution rate to enhance its oral absorption. A central composite design was used to optimise the amount of Poloxamer 188 and D-α-Tocopherol-polyethylene-glycol-succinate (TPGS). The optimised TAC-loaded NLCs contain stearic acid (250 mg), <i>Moringa oleifera</i> (MO) seed oil (50 mg), TAC (Tacrolimus: 10 mg), TPGS (60 mg), and Poloxamer 188 (1% w/v) with a mean diameter of 393.3 ± 29.68 nm, a zeta potential of -18.3 ± 6.19 mV, high entrapment efficiency (92.12 ± 1.14% w/w), and desirability (0.989). TAC-loaded NLCs showed ∼12 times higher drug dissolution efficiency, while <i>in-vitro</i> anti-inflammatory studies showed ∼1.8 times lower IC<sub>50</sub> (half-maximal inhibitory concentration) than TAC suspension. The lyophilised TAC-loaded NLCs were found to be stable after 3 months. Thus, the present study concludes the successful encapsulation of TAC in NLCs made of stearic acid and MO seed oil.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"502-516\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2023.2231075\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2231075","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Tacrolimus loaded nanostructured lipid carriers using Moringa oleifera seed oil: design, optimization and in-vitro evaluations.
The proposed research aims to develop Tacrolimus-loaded nanostructured lipid carriers (TAC-loaded NLCs) to overcome poor aqueous solubility and dissolution rate to enhance its oral absorption. A central composite design was used to optimise the amount of Poloxamer 188 and D-α-Tocopherol-polyethylene-glycol-succinate (TPGS). The optimised TAC-loaded NLCs contain stearic acid (250 mg), Moringa oleifera (MO) seed oil (50 mg), TAC (Tacrolimus: 10 mg), TPGS (60 mg), and Poloxamer 188 (1% w/v) with a mean diameter of 393.3 ± 29.68 nm, a zeta potential of -18.3 ± 6.19 mV, high entrapment efficiency (92.12 ± 1.14% w/w), and desirability (0.989). TAC-loaded NLCs showed ∼12 times higher drug dissolution efficiency, while in-vitro anti-inflammatory studies showed ∼1.8 times lower IC50 (half-maximal inhibitory concentration) than TAC suspension. The lyophilised TAC-loaded NLCs were found to be stable after 3 months. Thus, the present study concludes the successful encapsulation of TAC in NLCs made of stearic acid and MO seed oil.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.