S Skoczylas, P Jakiel, T Płoszaj, K Gadzalska, M Borowiec, A Pastorczak, H Moczulska, M Malarska, A Eckersdorf-Mastalerz, E Budzyńska, A Zmysłowska
{"title":"在波兰家庭中导致智力残疾和癫痫的基因中检测到新的潜在致病性变体。","authors":"S Skoczylas, P Jakiel, T Płoszaj, K Gadzalska, M Borowiec, A Pastorczak, H Moczulska, M Malarska, A Eckersdorf-Mastalerz, E Budzyńska, A Zmysłowska","doi":"10.1007/s10048-023-00724-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intellectual disability (ID) affects 1-3% of the world population. The number of genes whose dysfunctions cause intellectual disability is increasing. In addition, new gene associations are constantly being discovered, as well as specific phenotypic features for already identified genetic alterations are being described. The aim of our study was to search for pathogenic variants in genes responsible for moderate to severe intellectual disability and epilepsy, using a panel of targeted next-generation sequencing (tNGS) for diagnosis.</p><p><strong>Methods: </strong>The group of 73 patients (ID, n=32; epilepsy, n=21; ID and epilepsy, n=18) was enrolled in the nucleus DNA (nuDNA) study using a tNGS panel (Agilent Technologies, USA). In addition, high coverage mitochondrial DNA (mtDNA) was extracted from the tNGS data for 54 patients.</p><p><strong>Results: </strong>Fifty-two rare nuDNA variants, as well as 10 rare and 1 novel mtDNA variants, were found in patients in the study group. The 10 most damaging nuDNA variants were subjected to a detailed clinical analysis. Finally, 7 nuDNA and 1 mtDNA were found to be the cause of the disease.</p><p><strong>Conclusions: </strong>This shows that still a very large proportion of patients remain undiagnosed and may require further testing. The reason for the negative results of our analysis may be a non-genetic cause of the observed phenotypes or failure to detect the causative variant in the genome. In addition, the study clearly shows that analysis of the mtDNA genome is clinically relevant, as approximately 1% of patients with ID may have pathogenic variant in mitochondrial DNA.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545623/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel potentially pathogenic variants detected in genes causing intellectual disability and epilepsy in Polish families.\",\"authors\":\"S Skoczylas, P Jakiel, T Płoszaj, K Gadzalska, M Borowiec, A Pastorczak, H Moczulska, M Malarska, A Eckersdorf-Mastalerz, E Budzyńska, A Zmysłowska\",\"doi\":\"10.1007/s10048-023-00724-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Intellectual disability (ID) affects 1-3% of the world population. The number of genes whose dysfunctions cause intellectual disability is increasing. In addition, new gene associations are constantly being discovered, as well as specific phenotypic features for already identified genetic alterations are being described. The aim of our study was to search for pathogenic variants in genes responsible for moderate to severe intellectual disability and epilepsy, using a panel of targeted next-generation sequencing (tNGS) for diagnosis.</p><p><strong>Methods: </strong>The group of 73 patients (ID, n=32; epilepsy, n=21; ID and epilepsy, n=18) was enrolled in the nucleus DNA (nuDNA) study using a tNGS panel (Agilent Technologies, USA). In addition, high coverage mitochondrial DNA (mtDNA) was extracted from the tNGS data for 54 patients.</p><p><strong>Results: </strong>Fifty-two rare nuDNA variants, as well as 10 rare and 1 novel mtDNA variants, were found in patients in the study group. The 10 most damaging nuDNA variants were subjected to a detailed clinical analysis. Finally, 7 nuDNA and 1 mtDNA were found to be the cause of the disease.</p><p><strong>Conclusions: </strong>This shows that still a very large proportion of patients remain undiagnosed and may require further testing. The reason for the negative results of our analysis may be a non-genetic cause of the observed phenotypes or failure to detect the causative variant in the genome. In addition, the study clearly shows that analysis of the mtDNA genome is clinically relevant, as approximately 1% of patients with ID may have pathogenic variant in mitochondrial DNA.</p>\",\"PeriodicalId\":56106,\"journal\":{\"name\":\"Neurogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545623/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10048-023-00724-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-023-00724-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Novel potentially pathogenic variants detected in genes causing intellectual disability and epilepsy in Polish families.
Background: Intellectual disability (ID) affects 1-3% of the world population. The number of genes whose dysfunctions cause intellectual disability is increasing. In addition, new gene associations are constantly being discovered, as well as specific phenotypic features for already identified genetic alterations are being described. The aim of our study was to search for pathogenic variants in genes responsible for moderate to severe intellectual disability and epilepsy, using a panel of targeted next-generation sequencing (tNGS) for diagnosis.
Methods: The group of 73 patients (ID, n=32; epilepsy, n=21; ID and epilepsy, n=18) was enrolled in the nucleus DNA (nuDNA) study using a tNGS panel (Agilent Technologies, USA). In addition, high coverage mitochondrial DNA (mtDNA) was extracted from the tNGS data for 54 patients.
Results: Fifty-two rare nuDNA variants, as well as 10 rare and 1 novel mtDNA variants, were found in patients in the study group. The 10 most damaging nuDNA variants were subjected to a detailed clinical analysis. Finally, 7 nuDNA and 1 mtDNA were found to be the cause of the disease.
Conclusions: This shows that still a very large proportion of patients remain undiagnosed and may require further testing. The reason for the negative results of our analysis may be a non-genetic cause of the observed phenotypes or failure to detect the causative variant in the genome. In addition, the study clearly shows that analysis of the mtDNA genome is clinically relevant, as approximately 1% of patients with ID may have pathogenic variant in mitochondrial DNA.
期刊介绍:
Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry.
All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.